| 研究生: |
陳韋夷 Chen, Wei-Yi |
|---|---|
| 論文名稱: |
鋼柱在高溫環境下之潛變挫屈研究 A Study on Creep Buckling of Steel Columns in High Temperature Environment |
| 指導教授: |
邱耀正
Chiou, Yaw-Jeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 向量式有限元素法 、潛變 、潛變挫屈 、鋼結構 、火害 |
| 外文關鍵詞: | vector finite intrinsic finite element, creep buckling, creep, steel structure, fire |
| 相關次數: | 點閱:93 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋼材在高溫環境下之材料性質對鋼結構火害分析相當重要,為了能有效預測鋼結構受火害之行為,本文以向量式有限元素法之基礎理論,加入熱效應以及潛變效應,建立平面鋼結構在高溫環境下之數值分析模式,透過文獻之相關數值範例,進行驗證,確認向量式有限元素法的適用性與正確性。
利用本文所建立之數值分析模式,進行鋼柱在高溫環境下之潛變挫屈研究。以不同之載重比、升溫速率、細長比以及束制條件作為參數研究。另外,分別進行含潛變與不含潛變之比較,來探討潛變效應在火災環境之重要性。
To predict the behavior of steel structure under fire effect, the material properties is very important in the analysis in steel structure in high temperature environment. This study adopted the Vector Form Intrinsic Finite Element (VFIFE) method to investigate the nonlinear behavior of steel structures under heating and creep effects conditions, and establish the numerical analysis model of flat steel in high temperature environment. According to the numerical examples of related reference, we first confirm the applicability and accuracy of VFIFE .
By using the modified VFIFE in previous mention, we study the creep Buckling of steel columns in high temperature environment with different load ratio, heating rate, slenderness ratio and boundary restraint condition as parameters of this study. Furthermore, we respectively compare the result with or without creep effect, to discuss the importance of creep
effect in fire.
ASCE Manuals and Reports on Engineering Pratice No.78, “Structural Fire Protection.” ASCE, New York, 1992.
Bennetts, I.D., Pore, D.J., and Thomas, I.R., “Guidelines for Assessment of Fire Resistance of Structural Steel Members.” AISC ( Australian Institute of Steel Construction ), p3, 1990.
BSI, “Structural Use of Steelwork in Building.” Part8, Code of Practice for Fire Resistance Design, 2003.
Cheng, W. and Mak, K. “Computer analysis of steel frame in fire.” Journal Structural Div.-ASCE, Vol. 101, No. 4, pp.854–866, 1975
Dorn, J. E. “Some fundamental experiments on high temperature creep.” Journal of the Mechanical and Physics of Solids, 3, Pergamon, London.1954.
ECCS-Technical Committee 3, “European Recommendations for the Fire Safety of Steel Structures.” Elsevier Scientific, New York, 1983.
EUROCODE3, “Design of Steel Stuctures-Prat1.2:General Rules-Structural Fire Design.”( DD ENV 1993-2-3:2001 Corrected and reprinted September).
Fessler H, Hyde TH, “Creep deformation of metals, creep of engineering materials, ” In: Pomeroy CD, editor. A journal of strain analysis monograph. Mechanical Engineering Publication Limited, pp.85-110, 1978.
Fields, B. A. and Fields, R. J., “Elevated temperature deformation of structural steel.” National Institute of Standards and Techoloey, NISTIR 88-3899, 1989.
Fields, B. A. and Fields, R. J., “The Prediction of Elevated temperature deformation of structural steel under Anisothermal Conditions.” National Institute of Standards and Techoloey, NISTIR 4497, 1991
G. Williams-leir. “Creep of structural steel in fire: Analytical expressions” Fire and Materials, Vol.7, No. 2, pp.73-78, 1983.
Harmathy, T. Z., “A comprehensive creep model.” Journal Basic Engineering Trans - ASME, Vol.89, pp.469-502, 1967.
Harmathy, T. Z., “Creep deflection of metal beams in transient heating processes with particular reference to fire.” Can Journal Civil Engineering, Vol.3, No.2, pp.219-228, 1976.
Huang, Z. F. and Tan, K. H.“Rankine approach for fire resistance of axially-and-flexurally restrained steel columns.” Journal of Constructional Steel Research, Vol. 59, pp.1553-1571. 2003
Huang Z. F. and Tan, K. H. “Analytical Fire Resistance of Axially Restrained Steel Columns.” Journal 0f structural Engineering ASCE, Vol. 129, No. 11, pp.1531-1537, 2003.
Norton, F. H. “The Creep Of Steel at High Temprature.” McGraw Hill, New York, 1929.
Plem E. “Theoretical and experimental investigations of point setstructures, ” Swedish Council for Building Research, Document, D9,1975.
Sakumoto Y., Nakazato T. and Matsuzaki A. “High-Temperature Properties of Stainless Steel for Building Structures.” Journal of Structural Engineering, Vol. 122, No. 4, pp. 399-406, 1996.
Skowronski, W., “Study of the steel bea, deformation during fire.” Building and environment, Pergamon, New York, pp.159-167,1988.
Stanzak, W. W. “Fire tests on Wide-Flange Steel Beams Protected with Gypsum-sanded plaster.” Fire study No. 16 of the Division of Building Research, National Research Council of Canada, 1967.
Tan, K. H.,Ting, S. K., and Huang Z. F. “Visco-Elasto-Plastic Analysis of Steel Frames in Fire.” Journal of structural Engineering ASCE, Vol. 128, No. 1, pp. 105-114, 2002.
Zhang, H., “Studies of Steel Structure Material Mechanical Performance under the Fire Condition.” Journal of the Chinese Peoele’s Armed Police Force Academy, Vol. 20, pp. 33-35, 2004.
于宗漢,「耐火鋼H型柱之火害行為」,碩士論文,國立高雄第一科技大學,高雄,2006。
王仁佐,「向量式結構運動分析」,博士論文,國立中央大學土木工程研究所,中壢,2005。
內政部營建署,「鋼結構極限設計法規及解說」,行政院,2007。
孫金香、高偉 譯,建築物綜合防火設計,天津科技翻譯出版公司,天津,1994。
莊有清,「鋼材在高溫環境下之行為探討」,碩士論文,國立成功大學土木工程研究所,台南,2003。
張燕如,「鋼結構火害反應之向量式有限元素法分析」,碩士論文,國立成功大學土木工程研究所,台南,2007。
連寬宏,「高溫環境下鋼結構之向量式有限元素法」,博士論文,國立成功大學土木工程研究所,台南,2009。
曾冠華,「耐火鋼箱型鋼柱受火害之行為」,碩士論文,國立台灣科技大學營建工程系,台北,2005。
鍾雲吉,「考慮溫度效應之鋼構架非彈性分析」,碩士論文,國立成功大學土木工程研究所,台南,1988。