| 研究生: |
陳寶玉 Chen, Bao-Yu |
|---|---|
| 論文名稱: |
不同發病年齡的思覺失調症患者及其神經發展標記測量之微型核醣核酸異常表現 MicroRNA expression aberration of age at onset in schizophrenia with neurodevelopmental measures. |
| 指導教授: |
林聖翔
Lin, Sheng-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床醫學研究所 Institute of Clinical Medicine |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 131 |
| 中文關鍵詞: | 思覺失調症 、微型核醣核酸 、神經發展 、軟性神經指標 、細微體質特徵 、分子功能集富集分析 、發病年齡 、早發型 |
| 外文關鍵詞: | schizophrenia, microRNA, neurodevelopment, neurological soft signs, minor physical anomalies, functional enrichment, age at onset, early-onset |
| 相關次數: | 點閱:146 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一、背景
早發型思覺失調症有較嚴重的疾病症狀與較明顯的遺傳傾向。而微型核醣核酸包含遺傳與表觀遺傳之角色,並被認為是神經發展中主要調控因子之一,且可能被不同病程所影響。先前研究指出,微型核醣核酸的表現量可能導致神經發展的變化,進而與精神疾病的發病年齡相關。然而,對於與神經發展相關之微型核醣核酸(如:miR-137、miR-34a、miR-34b與miR-34c)與其於不同發病年齡的思覺失調症之神經發展過程表現程度仍未明確。本研究將探究miR-137、miR-34家族之異常表現量輔以神經發展標記測量,是否能作為不同發病年齡之潛在診斷生物標記。
二、實驗設計
本研究自台灣南部蒐集215名思覺失調症患者、40名躁鬱症患者、思覺失調症患者之一等親屬(早發型患者之親屬48名;成人型患者之親屬82名)與100名非精神疾病對照組的周邊血液,進行微型核醣核酸表現偵測。首先,將針對不同發病年齡之思覺失調症以及伴隨神經發展標記者,做miR-137、miR-34家族之表現量做分析。另外,我們也會透過分子功能集富集分析,探討思覺失調症患者之miR-137、miR-34家族於神經發展過程中,所共同牽涉之基因網絡。
三、結果
MiR-137、miR-34a所呈現的表現量在思覺失調症患者與躁鬱症患者(p < 0.001)有顯著差異,且此標記在精神疾病中可能與思覺失調症相關。同時,miR-137在思覺失調症患者與非精神疾病對照組(p < 0.001)也有差異。此外,miR-137、miR-34a與miR-34b在早發型和成人型思覺失調症患者之間有顯著差異(p < 0.005)。且在ROC曲線分析中,miR-34b有較佳的鑑別能力(AUC = 0.810)。進一步研究也發現,miR-137的表現量在早發型思覺失調症且有神經發展標記特徵之個案,相對於非精神疾病對照組有較高之鑑別能力(AUC = 0.910 - 0.957)。
四、結論
於周邊血液當中,三個候選的微型核醣核酸(miR-137、miR-34a與miR-34b)之異常表現能於早發型及成人型思覺失調症患者之間有差別。其可能隱含對於依賴微型核醣核酸調控之基因有異常表現,並可能透過其相關之表現數量性狀基因座所調變,進而同時增加思覺失調症不同發病之風險。本篇研究提供更進一步線索,有關於周邊血液之微型核醣核酸表現量結合神經發展測量,以作為神經發展狀態改變與發病年齡潛在穩定之生化標記。
Background.
The onset age of schizophrenia is related to the severity of the subsequent symptoms, especially the early-onset schizophrenia (EOS) could also reflect genetic propensity. MicroRNA (miRNA) can be regarded as one of the master regulators of neurodevelopment which displays genetic and epigenetic roles that could, therefore, be affected by disease processes. Previous studies have shown that miRNA expression for mental illness might manifest to alter neurodevelopment prior to disease onset. However, the neurodevelopment-related miRNAs (i.e. miR-137, miR-34a, miR-34b and miR-34c) expression levels in different age onset of schizophrenia during neurodevelopmental process remain unknown. In this study, we aimed to investigate the aberrant expression of miR-137 and miR-34 family combined with neurodevelopmental measures might serve as a clinically useful biomarker in different age onset of schizophrenia.
Experimental Design.
In the current study, we collected blood samples of patients with schizophrenia (n = 215), bipolar disorder patients (n = 40), nonpsychotic first-degree relatives (relatives of EOS, n = 48; relatives of AOS, n = 82) and nonpsychotic controls (n = 100) as comparison groups from southern Taiwan. First, we examined the miR-137 and miR-34 family expression levels in different age onset of schizophrenia with neurodevelopmental measures. On the other hand, we will identify miR-137 and miR-34 family target genes involved in neurodevelopment via functional enrichment analysis.
Results.
Mir-137 and miR-34a presented significant expression patterns that could distinguish schizophrenia patients from bipolar disorder (p < 0.001) and might specifically recognize schizophrenia patients from other mental illness. Meanwhile, miR-137 and miR-34a have also presented a significant difference between schizophrenia patients and nonpsychotic controls (p < 0.001). Furthermore, the expression levels of miR-137, miR-34a and miR-34b could appraise early-onset and adult-onset schizophrenia significantly (p < 0.005). However, in the ROC curve analysis, only miR-34b provided fine discriminant ability (AUC = 0.810). For the further examination, when the EOS with neurodevelopmental markers, the miR-137 expression levels would have significantly higher AUCs for differentiation (for EOS with NSS, AUC = 0.957; for EOS with MPA, AUC = 0.910).
Conclusions.
The aberrant expressions are seen in the peripheral blood of three candidate miRNAs (miR-137 and miR-34a and miR-34b) between EOS and AOS. This may suggest that abnormal regulation of miRNA-dependent gene expression may be modulated via their associated expression quantitative trait loci (eQTLs) and together increase the risk of different age at onset schizophrenia susceptibility. These findings provide further insights into peripheral miRNAs expression levels combined with neurodevelopmental measures as potential stable biomarkers for the alter neurodevelopmental status to disease onset.
1. van Os J, Kapur S. Schizophrenia. Lancet Aug 22 2009;374(9690):635-645.
2. van Os J, Kenis G, Rutten BP. The environment and schizophrenia. Nature Nov 11 2010;468(7321):203-212.
3. Sullivan PF, Fan C, Perou CM. Evaluating the comparability of gene expression in blood and brain. Am J Med Genet B Neuropsychiatr Genet Apr 5 2006;141B(3):261-268.
4. Liu S, Yuan YB, Guan LL, et al. MiRNA-365 and miRNA-520c-3p respond to risperidone treatment in first-episode schizophrenia after a 1 year remission. Chin Med J (Engl) Jul 2013;126(14):2676-2680.
5. Seo MS, Scarr E, Lai CY, Dean B. Potential molecular and cellular mechanism of psychotropic drugs. Clin Psychopharmacol Neurosci Aug 2014;12(2):94-110.
6. Wei H, Yuan Y, Liu S, et al. Detection of circulating miRNA levels in schizophrenia. Am J Psychiatry Nov 1 2015;172(11):1141-1147.
7. Lai CY, Lee SY, Scarr E, et al. Aberrant expression of microRNAs as biomarker for schizophrenia: from acute state to partial remission, and from peripheral blood to cortical tissue. Transl Psychiat Jan 19 2016;6.
8. Maffioletti E, Tardito D, Gennarelli M, Bocchio-Chiavetto L. Micro spies from the brain to the periphery: new clues from studies on microRNAs in neuropsychiatric disorders. Front Cell Neurosci 2014;8:75.
9. Sakamoto K, Crowley JJ. A comprehensive review of the genetic and biological evidence supports a role for MicroRNA-137 in the etiology of schizophrenia. Am J Med Genet B Neuropsychiatr Genet Mar 2018;177(2):242-256.
10. Jack A, Connelly JJ, Morris JP. DNA methylation of the oxytocin receptor gene predicts neural response to ambiguous social stimuli. Frontiers in human neuroscience 2012;6:280.
11. Richfield O, Alam MA, Calhoun V, Wang Y-P. Learning schizophrenia imaging genetics data via multiple kernel canonical correlation analysis. Paper presented at: Bioinformatics and Biomedicine (BIBM), 2016 IEEE International Conference on, 2016.
12. Chaudhary K, Poirion OB, Lu L, Garmire LX. Deep Learning-Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer. Clin Cancer Res Mar 15 2018;24(6):1248-1259.
13. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell Jan 23 2009;136(2):215-233.
14. Sun W, Julie Li YS, Huang HD, Shyy JY, Chien S. microRNA: a master regulator of cellular processes for bioengineering systems. Annu Rev Biomed Eng Aug 15 2010;12:1-27.
15. Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: approaches and considerations. Nat Rev Genet Apr 18 2012;13(5):358-369.
16. Gebauer F, Hentze MW. Molecular mechanisms of translational control. Nat Rev Mol Cell Biol Oct 2004;5(10):827-835.
17. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. cell 2005;120(1):15-20.
18. Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk E, Bertrand E, Filipowicz W. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science Sep 2 2005;309(5740):1573-1576.
19. Cao X, Yeo G, Muotri AR, Kuwabara T, Gage FH. Noncoding RNAs in the mammalian central nervous system. Annu Rev Neurosci 2006;29:77-103.
20. Chen J, Schwarz E. The role of blood-based biomarkers in advancing personalized therapy of schizophrenia. Expert Review of Precision Medicine and Drug Development 2017;2(6):363-370.
21. Gardiner E, Beveridge NJ, Wu JQ, Carr V, Scott RJ, Tooney PA, Cairns MJ. Imprinted DLK1-DIO3 region of 14q32 defines a schizophrenia-associated miRNA signature in peripheral blood mononuclear cells. Mol Psychiatry Jul 2012;17(8):827-840.
22. Santarelli DM, Liu B, Duncan CE, Beveridge NJ, Tooney PA, Schofield PR, Cairns MJ. Gene-microRNA interactions associated with antipsychotic mechanisms and the metabolic side effects of olanzapine. Psychopharmacology (Berl) May 2013;227(1):67-78.
23. Miller BH, Zeier Z, Xi L, et al. MicroRNA-132 dysregulation in schizophrenia has implications for both neurodevelopment and adult brain function. P Natl Acad Sci USA Feb 21 2012;109(8):3125-3130.
24. Song HT, Sun XY, Zhang L, et al. A preliminary analysis of association between the down-regulation of microRNA-181b expression and symptomatology improvement in schizophrenia patients before and after antipsychotic treatment. J Psychiatr Res Jul 2014;54:134-140.
25. Gardiner E, Carroll A, Tooney PA, Cairns MJ. Antipsychotic drug-associated gene–miRNA interaction in T-lymphocytes. International Journal of Neuropsychopharmacology 2014;17(6):929-943.
26. Hansen T, Olsen L, Lindow M, et al. Brain expressed microRNAs implicated in schizophrenia etiology. PLoS One Sep 12 2007;2(9):e873.
27. Xu Y, Li F, Zhang B, et al. MicroRNAs and target site screening reveals a pre-microRNA-30e variant associated with schizophrenia. Schizophr Res Jun 2010;119(1-3):219-227.
28. Williamson VS, Mamdani M, McMichael GO, Kim AH, Lee D, Bacanu S, Vladimirov VI. Expression quantitative trait loci (eQTLs) in microRNA genes are enriched for schizophrenia and bipolar disorder association signals. Psychol Med 2015;45(12):2557-2569.
29. Dean B, Keriakous D, Scarr E, Thomas EA. Gene expression profiling in Brodmann's area 46 from subjects with schizophrenia. Aust N Z J Psychiatry Apr 2007;41(4):308-320.
30. Narayan S, Tang B, Head SR, Gilmartin TJ, Sutcliffe JG, Dean B, Thomas EA. Molecular profiles of schizophrenia in the CNS at different stages of illness. Brain research 2008;1239:235-248.
31. Dean B, Gibbons A, Scarr E, Thomas EA. Changes in gene expression in subjects with schizophrenia associated with disease progression. Handbook of Schizophrenia Spectrum Disorders, Volume I: Springer; 2011:237-251.
32. Lawrie SM, Olabi B, Hall J, McINTOSH AM. Do we have any solid evidence of clinical utility about the pathophysiology of schizophrenia? World Psychiatry 2011;10(1):19-31.
33. Bachmann S, Degen C, Geider FJ, Schroder J. Neurological soft signs in the clinical course of schizophrenia: results of a meta-analysis. Front Psychiatry Dec 23 2014;5.
34. Rapoport JL, Giedd JN, Gogtay N. Neurodevelopmental model of schizophrenia: update 2012. Mol Psychiatry Dec 2012;17(12):1228-1238.
35. Tarrant CJ, Jones PB. Precursors to schizophrenia: Do biological markers have specificity? Can J Psychiat May 1999;44(4):335-349.
36. Cornblatt BA, Lencz T, Smith CW, Correll CU, Auther AM, Nakayama E. The schizophrenia prodrome revisited: a neurodevelopmental perspective. Schizophr Bull 2003;29(4):633-651.
37. Jaaro-Peled H, Hayashi-Takagi A, Seshadri S, Kamiya A, Brandon NJ, Sawa A. Neurodevelopmental mechanisms of schizophrenia: understanding disturbed postnatal brain maturation through neuregulin-1-ErbB4 and DISC1. Trends Neurosci Sep 2009;32(9):485-495.
38. Heinrichs DW, Buchanan RW. Significance and meaning of neurological signs in schizophrenia. Am J Psychiatry Jan 1988;145(1):11-18.
39. Bombin I, Arango C, Buchanan RW. Significance and meaning of neurological signs in schizophrenia: two decades later. Schizophr Bull Oct 2005;31(4):962-977.
40. Chan RCK, Xu T, Heinrichs RW, Yu Y, Wang Y.
Neurological Soft Signs in Schizophrenia: A Meta-analysis. Schizophrenia Bull Nov 2010;36(6):1089-1104.
41. Buchanan RW, Heinrichs DW. The Neurological Evaluation Scale (NES): a structured instrument for the assessment of neurological signs in schizophrenia. Psychiatry Res Mar 1989;27(3):335-350.
42. Hirjak D, Wolf RC, Koch SC, et al. Neurological abnormalities in recent-onset schizophrenia and Asperger-syndrome. Front Psychiatry Aug 6 2014;5.
43. Neelam K, Garg D, Marshall M. A systematic review and meta-analysis of neurological soft signs in relatives of people with schizophrenia. BMC Psychiatry Aug 22 2011;11:139.
44. Chan RC, Gottesman II. Neurological soft signs as candidate endophenotypes for schizophrenia: a shooting star or a Northern star? Neuroscience & Biobehavioral Reviews 2008;32(5):957-971.
45. Cannon TD. The inheritance of intermediate phenotypes for schizophrenia. Curr Opin Psychiatry Mar 2005;18(2):135-140.
46. Franco JG, Valero J, Labad A. Minor physical anomalies and schizophrenia: literature review. Actas Esp Psiquiatr Nov-Dec 2010;38(6):365-371.
47. Ismail B, Cantor-Graae E, McNeil TF. Minor physical anomalies in schizophrenia: cognitive, neurological and other clinical correlates. J Psychiatr Res 2000;34(1):45-56.
48. Aksoy-Poyraz C, Poyraz BC, Turan S, Arikan MK. Minor physical anomalies and neurological soft signs in patients with schizophrenia and their siblings. Psychiatry Res Nov 30 2011;190(1):85-90.
49. Gassab L, Aissi M, Slama H, Gaha L, Mechri A. Prevalence and score of minor physical anomalies in patients with schizophrenia and their first degree relatives: A Tunisian study. Comprehensive psychiatry 2013;54(5):575-580.
50. Xu T, Chan RC, Compton MT. Minor physical anomalies in patients with schizophrenia, unaffected first-degree relatives, and healthy controls: a meta-analysis. PLoS One 2011;6(9):e24129.
51. Lane A, Kinsella A, Murphy P, et al. The anthropometric assessment of dysmorphic features in schizophrenia as an index of its developmental origins. Psychological Medicine 1997;27(5):1155-1164.
52. Lloyd T, Dazzan P, Dean K, et al. Minor physical anomalies in patients with first-episode psychosis: their frequency and diagnostic specificity. Psychological medicine 2008;38(1):71-77.
53. McGrath JJ, Féron FP, Burne TH, Mackay-Sim A, Eyles DW. The neurodevelopmental hypothesis of schizophrenia: a review of recent developments. Annals of medicine 2003;35(2):86-93.
54. Ismail B, Cantor-Graae E, McNeil TF. Minor physical anomalies in schizophrenic patients and their siblings. American Journal of Psychiatry 1998;155(12):1695-1702.
55. Akabaliev V, Sivkov S, Mantarkov M, Ahmed-Popova F. Biomarker profile of minor physical anomalies in schizophrenia patients. Folia medica 2011;53(3):45-51.
56. Tikka SK, Nizamie SH, Das B, Katshu MZUH, Goyal N. Increased spontaneous gamma power and synchrony in schizophrenia patients having higher minor physical anomalies. Psychiatry research 2013;207(3):164-172.
57. Dean K, Fearon P, Morgan K, et al. Grey matter correlates of minor physical anomalies in the AeSOP first-episode psychosis study. The British Journal of Psychiatry 2006;189(3):221-228.
58. Rajman M, Schratt G. MicroRNAs in neural development: from master regulators to fine-tuners. Development Jul 1 2017;144(13):2310-2322.
59. Hauberg ME, Roussos P, Grove J, Borglum AD, Mattheisen M, Schizophrenia Working Group of the Psychiatric Genomics C. Analyzing the Role of MicroRNAs in Schizophrenia in the Context of Common Genetic Risk Variants. JAMA Psychiatry Apr 2016;73(4):369-377.
60. Beveridge NJ, Gardiner E, Carroll AP, Tooney PA, Cairns MJ. Schizophrenia is associated with an increase in cortical microRNA biogenesis. Mol Psychiatr Dec 2010;15(12):1176-1189.
61. Guella I, Sequeira A, Rollins B, et al. Analysis of miR-137 expression and rs1625579 in dorsolateral prefrontal cortex. J Psychiatr Res Sep 2013;47(9):1215-1221.
62. Sun XY, Lu J, Zhang L, et al. Aberrant microRNA expression in peripheral plasma and mononuclear cells as specific blood-based biomarkers in schizophrenia patients. J Clin Neurosci Mar 2015;22(3):570-574.
63. Ripke S, Sanders AR, Kendler KS, et al. Genome-wide association study identifies five new schizophrenia loci. Nat Genet Oct 2011;43(10):969-U977.
64. Ripke S, Neale BM, Corvin A, et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature Jul 24 2014;511(7510):421-+.
65. Forstner AJ, Hofmann A, Maaser A, et al. Genome-wide analysis implicates microRNAs and their target genes in the development of bipolar disorder. Transl Psychiat Nov 10 2015;5.
66. Bavamian S, Mellios N, Lalonde J, et al. Dysregulation of miR-34a links neuronal development to genetic risk factors for bipolar disorder. Mol Psychiatry May 2015;20(5):573-584.
67. Zheutlin AB, Jeffries CD, Perkins DO, et al. The Role of microRNA Expression in Cortical Development During Conversion to Psychosis. Neuropsychopharmacology Oct 2017;42(11):2188-2195.
68. Weissman MM, Gershon ES, Kidd KK, et al. Psychiatric-Disorders in the Relatives of Probands with Affective-Disorders. Arch Gen Psychiat 1984;41(1):13-21.
69. Strober M, Morrell W, Burroughs J, Lampert C, Danforth H, Freeman R. A family study of bipolar I disorder in adolescence. Early onset of symptoms linked to increased familial loading and lithium resistance. J Affect Disord Nov-Dec 1988;15(3):255-268.
70. Suvisaari JM, Haukka J, Tanskanen A, Lonnqvist JK. Age at onset and outcome in schizophrenia are related to the degree of familial loading. Brit J Psychiat Dec 1998;173:494-500.
71. Schurhoff F, Bellivier F, Jouvent R, Mouren-Simeoni MC, Bouvard M, Allilaire JF, Leboyer M. Early and late onset bipolar disorders: two different forms of manic-depressive illness? J Affect Disord Jun 2000;58(3):215-221.
72. Faraone SV, Glatt SJ, Tsuang MT. The genetics of pediatric-onset bipolar disorder. Biol Psychiat Jun 1 2003;53(11):970-977.
73. Clemmensen L, Vernal DL, Steinhausen HC. A systematic review of the long-term outcome of early onset schizophrenia. Bmc Psychiatry Sep 19 2012;12.
74. Zhang FQ, Xu Y, Shugart YY, et al. Converging Evidence Implicates the Abnormal MicroRNA System in Schizophrenia. Schizophrenia Bull May 2015;41(3):728-735.
75. Sun G, Ye P, Murai K, et al. miR-137 forms a regulatory loop with nuclear receptor TLX and LSD1 in neural stem cells. Nat Commun Nov 8 2011;2:529.
76. Girgenti MJ, LoTurco JJ, Maher BJ. ZNF804a regulates expression of the schizophrenia-associated genes PRSS16, COMT, PDE4B, and DRD2. PLoS One 2012;7(2):e32404.
77. Smrt RD, Szulwach KE, Pfeiffer RL, et al. MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1. Stem Cells Jun 2010;28(6):1060-1070.
78. Brzozka MM, Radyushkin K, Wichert SP, Ehrenreich H, Rossner MJ. Cognitive and Sensorimotor Gating Impairments in Transgenic Mice Overexpressing the Schizophrenia Susceptibility Gene Tcf4 in the Brain. Biol Psychiat Jul 1 2010;68(1):33-40.
79. Sang N, Zhang J, Marcheselli V, Bazan NG, Chen C. Postsynaptically synthesized prostaglandin E2 (PGE2) modulates hippocampal synaptic transmission via a presynaptic PGE2 EP2 receptor. J Neurosci Oct 26 2005;25(43):9858-9870.
80. Nery FG, Monkul ES, Hatch JP, Fonseca M, Zunta GB, Frey BN, Bowden CL, Soares JC. Cox-2 inhibitor (Celecoxib) as an adjunct in the treatment of depressive or mixed episodes of bipolar disorder: A double-blind, randomized, placebo-controlled study. Biol Psychiat Apr 15 2007;61(8):171s-171s.
81. Fiocco AJ, Lindquist K, Ferrell R, et al. COMT genotype and cognitive function: an 8-year longitudinal study in white and black elders. Neurology Apr 20 2010;74(16):1296-1302.
82. Barkus C, Korn C, Stumpenhorst K, et al. Genotype-Dependent Effects of COMT Inhibition on Cognitive Function in a Highly Specific, Novel Mouse Model of Altered COMT Activity. Neuropsychopharmacology Dec 2016;41(13):3060-3069.
83. Ferreira MAR, O'Donovan MC, Meng YA, et al. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet Sep 2008;40(9):1056-1058.
84. Green EK, Grozeva D, Jones I, et al. The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. Mol Psychiatr Oct 2010;15(10):1016-1022.
85. Dao DT, Mahon PB, Cai X, et al. Mood disorder susceptibility gene CACNA1C modifies mood-related behaviors in mice and interacts with sex to influence behavior in mice and diagnosis in humans. Biol Psychiatry Nov 01 2010;68(9):801-810.
86. Hitoshi S, Seaberg RM, Koscik C, Alexson T, Kusunoki S, Kanazawa I, Tsuji S, van der Kooy D. Primitive neural stem cells from the mammalian epiblast differentiate to definitive neural stem cells under the control of Notch signaling. Genes Dev Aug 1 2004;18(15):1806-1811.
87. Mizutani K, Yoon K, Dang L, Tokunaga A, Gaiano N. Differential Notch signalling distinguishes neural stem cells from intermediate progenitors. Nature Sep 20 2007;449(7160):351-355.
88. Sun N, Lei L, Wang Y, Yang C, Liu Z, Li X, Zhang K. Preliminary comparison of plasma notch-associated microRNA-34b and-34c levels in drug naive, first episode depressed patients and healthy controls. Journal of affective disorders 2016;194:109-114.
89. Lopez JP, Fiori LM, Gross JA, Labonte B, Yerko V, Mechawar N, Turecki G. Regulatory role of miRNAs in polyamine gene expression in the prefrontal cortex of depressed suicide completers. International Journal of Neuropsychopharmacology 2014;17(1):23-32.
90. Inui M, Martello G, Piccolo S. MicroRNA control of signal transduction. Nature reviews Molecular cell biology 2010;11(4):252.
91. Bae Y, Yang T, Zeng HC, et al. miRNA-34c regulates Notch signaling during bone development. Hum Mol Genet Jul 1 2012;21(13):2991-3000.
92. Obiols JE, Serrano F, Caparrós B, Subirá S, Barrantes N. Neurological soft signs in adolescents with poor performance on the continuous performance test: markers of liability for schizophrenia spectrum disorders? Psychiatry Research 1999;86(3):217-228.
93. Tsai I-N, Lin J-J, Lu M-K, Tan H-P, Jang F-L, Gan S-T, Lin S-H. Improving risk assessment and familial aggregation of age at onset in schizophrenia using minor physical anomalies and craniofacial measures. Medicine 2016;95(30).
94. Lin A-S, Chang S-S, Lin S-H, Peng Y-C, Hwu H-G, Chen W. Minor physical anomalies and craniofacial measures in patients with treatment-resistant schizophrenia. Psychological medicine 2015;45(9):1839-1850.
95. Farkas LG, Cheung G. Facial asymmetry in healthy North American Caucasians: an anthropometrical study. The Angle Orthodontist 1981;51(1):70-77.
96. Wu S, Zhang R, Nie F, et al. MicroRNA-137 inhibits EFNB2 expression affected by a genetic variant and is expressed aberrantly in peripheral blood of schizophrenia patients. EBioMedicine 2016;12:133-142.
97. Andersen CM, Bro R. Variable selection in regression—a tutorial. Journal of Chemometrics 2010;24(11‐12):728-737.
98. Verga M, Macciardi F, Pedrini S, Cohen S, Smeraldi E. No association of the Ser/Cys311 DRD2 molecular variant with schizophrenia using a classical case control study and the haplotype relative risk. Schizophrenia research 1997;25(2):117-121.
99. Glatt S, Faraone S, Lasky-Su J, Kanazawa T, Hwu H, Tsuang M. Family-based association testing strongly implicates DRD2 as a risk gene for schizophrenia in Han Chinese from Taiwan. Molecular psychiatry 2009;14(9):885.
100. Mahmoudi E, Cairns MJ. MiR-137: an important player in neural development and neoplastic transformation. Mol Psychiatry Jan 2017;22(1):44-55.
101. Lai CY, Wu YT, Yu SL, et al. Modulated expression of human peripheral blood microRNAs from infancy to adulthood and its role in aging. Aging Cell Aug 2014;13(4):679-689.
102. Cannon TD, Chung Y, He G, et al. Progressive reduction in cortical thickness as psychosis develops: a multisite longitudinal neuroimaging study of youth at elevated clinical risk. Biological psychiatry 2015;77(2):147-157.
103. Andreasen NC, Pressler M, Nopoulos P, Miller D, Ho BC. Antipsychotic dose equivalents and dose-years: a standardized method for comparing exposure to different drugs. Biol Psychiatry Feb 1 2010;67(3):255-262.
104. Xiao J, Peng F, Yu C, Wang M, Li X, Li Z, Jiang J, Sun C. microRNA-137 modulates pancreatic cancer cells tumor growth, invasion and sensitivity to chemotherapy. Int J Clin Exp Pathol 2014;7(11):7442-7450.
105. Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D, Bader AG. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res Jul 15 2010;70(14):5923-5930.
106. Liu C, Kelnar K, Liu B, et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med Feb 2011;17(2):211-215.
107. Trang P, Medina PP, Wiggins JF, et al. Regression of murine lung tumors by the let-7 microRNA. Oncogene Mar 18 2010;29(11):1580-1587.
108. Dazzan P, Morgan KD, Orr KG, et al. The structural brain correlates of neurological soft signs in AESOP first-episode psychoses study. Brain Jan 2004;127(Pt 1):143-153.
109. Bachmann S, Bottmer C, Schroder J. Neurological soft signs in first-episode schizophrenia: a follow-up study. Am J Psychiatry Dec 2005;162(12):2337-2343.
110. Compton MT, Walker EF. Physical manifestations of neurodevelopmental disruption: are minor physical anomalies part of the syndrome of schizophrenia? Schizophr Bull Mar 2009;35(2):425-436.
校內:不公開