| 研究生: |
王端志 Wang, Duan-chih |
|---|---|
| 論文名稱: |
奈米黏土對含硼酚醛樹脂複合材料熱性質之改進 Improved Thermal Properties in Nanocomposites Combining Boron and Montmorillonite with Phenolic Resins |
| 指導教授: |
陳雲
Chen, Yun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 奈米複合材料 、酚醛樹脂 、硼 |
| 外文關鍵詞: | nanocomposites, phenolic resins, boron-modified |
| 相關次數: | 點閱:130 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了進ㄧ步提升酚醛樹脂的熱性質,本研究同時將奈米黏土蒙脫土(Montmorillonite)與硼導入酚醛樹脂中,以in-situ聚合法來製備蒙脫土/硼酚醛樹脂奈米復合材料,期望可以達到現今耐燒蝕高功能性酚醛樹脂的需求。實驗室之前研究發現[1],含有苯環的改質劑,因與酚醛樹脂有相似結構,可以提高酚醛樹脂與奈米黏土間的相容性,進而提高材料的熱性質。本研究選用三種含有Benzyl-的改質劑,分別為Benzyldimethylhezadecylammonium chloride (MH)、Benzyldimethylphenylammonium chloride (MP),以及Benzyltriethylammonium chloride (BE)。複合材料命名方式以改質劑名稱-蒙脫土含量來表示,舉例來說,MH-10%是用MH改質蒙脫土來製備的酚醛樹脂複合材料,百分比是指改質蒙脫土含量是酚重量百分比的10 %;MH-B10%則是MH系列含硼的複合材料,改質蒙脫土含量是酚重量百分比的10 %,B是取硼(Boron)的意思。經由XRD的分析與TEM的觀察,含硼的複合材料MH-B10%、MP-B10%和BE-B10%,蒙脫土的矽酸鹽層均可以達到一定的分散,均勻分散在複合材料裡面。以TGA測量在氮氣下10 %熱裂解溫度(Decomposition temperature, Td)都在520 oC以上。其中最好的是MP系列,Td都在560 oC左右,Residual weight也都在70 %以上。
In order to further upgrade thermal stability of the phenolic resins, we combine boron and clay with phenolic resins to prepare nanocomposites. Clay (Montmorillonite)/boron-containing phenolic resin nanocomposites have been successfully prepared using in-situ polymerization of resol-type phenolic resins. Clay such as montmorillonite was modified by benzyldimethylhexadecylammonium chloride (MH), benzyldimethyphenylammonium chloride (MP), and benzyltriethylammonium chloride (BE). X-ray diffraction measurements and transmission electron microscope (TEM) observations showed that clay platelets were partially exfoliated after complete curing of phenolic resins. The cured nanocomposites were named as modifier-MMT contents and boron-containing nanocomposites named as modifier-B-MMT contents (B means boron), for example, MH-10% or MH-B10%. Thermogravimetric analysis showed that thermal decomposition temperature (Td) of cured boron-containing nanocomposites are more than non-boron ones. For example, the raise in decomposition temperature of MP-B10% (from 523 to 568 oC) is about 45 oC, respectively, whereas the enhancement in char yields is 9.6% (from 63.4% to 73.0%).
[1] Jiang, W.; Chen S. H.; Chen, Y. J Appl Polym Sci, 102, 5336-5343 (2006).
[2] 葉德歡,” 改變世界的奈米技術”,瀛舟出版社,台灣台北,2003年。
[3] Gibson, R. F. Principles of Composite Material Mechanics, McGraw-Hill, New York (1994).
[4] Pinnavaia, T. and Beall, G. Polymer-Clay Nanocomposites. Wiley & Sons, London, UK (2000).
[5] Okada, A. et al. Mater Res Soc Proc, 171, 45 (1990).
[6] Naoki, H.; Hirotaka, O.; Masaya, K.; Arimistu, U. J App Polym Sci, 74, 3359-3364 (1999).
[7] Kawasumi, M.; Hasegawa, N.; Kato, M.; Usuki, A.; Okada, A. Macromolecules, 30, 6333-6338 (1997).
[8] Chang, J.; Seo, B.; Hwang, D. Polym, 43, 2969-2974 (2002).
[9] Triantafillidis, C.; LeBaron, P.; Pinnavaia, T. Chem Mater, 14, 4088-4095 (2002).
[10] Choi, W.; Kim, S.; Young, J.; Kim, S. Polym, 45, 6045-6057 (2004).
[11] Yang, R.; Atsushi, T.; Wong, C.P. 8th Int Symp On Adv Packag Mater, pp.188-193 (2002).
[12] Natitoal Center for Manufacturing Sciences, Embedded Decoupling Capacitance Project Final Report, NCMS Project No. 160213 (2000).
[13] Sugimoto, W.; Shirata, M.; Sugahara, Y.; Kuroda, K.; J Am Chem Soc, 121, 11602 (1999).
[14] Mills A.; Le Hunte, S. J Photochem Photobiol A: Chem, 108, 1 (1997).
[15] Hagfeldt, A.; Gratzel, M. Acc Chem Res, 33, 2699 (2000).
[16] Akelah, A.; Moet, A.; J Appl Polym Sci: Appl Polymer Symp, 55, 153 (1994).
[17] Messersmith, P. B.; Giannelis, E. P. Chem Mater, 6, 1719 (1994).
[18]Vaia, R. A.; Jandt, K. D.; Kramer, E. J.; Giannelis, E. P. Macromolecules, 28, 8080-8085 (1995).
[19] Vaia, R. A.; Jandt, K. D.; Kramer, E. J.; Giannelis, E. P. Chem Mater, 8, 2628-2635 (1996).
[20] Knop, A. and Pilato L. A. Phenolic Resins-Chemistry, Applications and Performance, Springer-Verlag, Berlin (1985).
[21] Knop, A. and Scheib, W. Chemistry and Application of Phenolic Resins, Springer-Verlag, New York (1979).
[22] Sandler, S. R. and Karo, W. Polymer Synthesis, 2nd ed., Vol. 2, Academic Boston (1992).
[23] Zinke, A. Chem Abs, 43, 5993-5994 (1949).
[24] Orrell, E. W.; Burns, R. Plasti Polym, 469 (1968).
[25] Hatfield, G. R.; Maciel, G. E. Macromolecules, 20, 608-615 (1987).
[26] 沈紅,雷毅,王海靜,”新型耐燒蝕酚醛樹脂”,四川大學高分子科學與工程學院,第19卷,30-33,2004年。
[27] 甘朝志,”硼酚醛樹脂的研製”,貴州省化工研究所,第3卷,17-19,1998年。
[28] 譚曉明等,”高羥甲基含量硼酚醛樹脂的合成與表徵”,塑料工業,第29卷,6-8,2001年。
[29] 趙小玲,齊暑華,揚輝,張劍,”酚醛樹脂的高性能化改性研究新進展”,現代塑料加工應用,第15卷,50-54,2003年。
[30] 宋學智,”酚醛樹脂燒蝕性能研究進展”,工程塑料應用,第31卷,69-71,2003年。
[31] 張敏,魏俊發,謝俊杰,”耐高溫燒灼熱固性硼酚醛樹脂的合成”,合成化學,第12卷,77-80,2004年。
[32] 馬榴強,周秀民,李曉林,”酚醛樹脂改性研究進展”,塑料,第33卷,39-42,2004年。
[33] Saegusa, T. Pure and Appl Chem, 67, 1965 (1995).
[34] Novak, B. M. Adv Mater, 5, 422 (1993).
[35] Wang, J. F.; Merino, J.; Ananda, P.; Galvan, J. C. J Mater Chem, 19, 161 (1999).
[36] Bremer, L. G. B.; verbong, M. W. C. G.; Webers, M. A. M.; Van Doorn, M. A. M. M. Synth Mat, 84, 355 (1997).
[37] Vaia, R. A.; Liu, W. J Polym Sci: Part B: Polym Phys, 40, 1590-1600 (2002).
[38] Vaia, R. A.; Giannelis, E. P. Macromolecules, 30, 7990-7999 (1997).
[39] Vaia, R. A.; Giannelis, E. P. Macromolecules, 30, 8000-8009 (1997).
[40] Usuki, A.; Mizutani, T.; Fukushima, Y.; Fujimoto, M.; Fukomori, K.; Kojima, Y.; Sato, N.; Kurauchi, T.; Kamikaito, O. U. S. Patent, 889,885 (1989).
[41] Choi, M. H.; Chung, I. J.; Lee, J. D. Chem Mater, 12, 2977-2983 (2000).
[42] Wu, Z.; Zhou, C.; Qi, R. Polym Composite, 23, 634-646 (2002).
[43] Choi, M. H.; Chung, I. J. J Appl Polym Sci, 90, 2316-2321 (2003).
[44] Chiang, C. L.; Ma, C. C. M.; Wu, D. L.; Kuan, H. C. J Polym Sci: Part A: Polym Chem, 41, 905-913 (2003).
[45] Williams, E. P. M.; Seferis, J. C.; Wittman, C. L.; Parker, G. A.; Lee, J. H.; Nam, J.-D. J Polym Sci: Part B: Polym Phys, 42, 1-4 (2004).
[46] Wang, H. S.; Zhao, T.; Yan, Y.; Yu, Y. Z. J Appl Polym Sci, 92, 791-797 (2004).
[47] Chiang, C. L.; Ma, C. C. M. Polym Deg and Stab, 83, 207-214 (2004).
[48] Chou, C. C.; Lin, J. J. Macromolecules 38, 230-233 (2005).
[49] Chou, C. C.; Chiang, M. L.; Tsai, C. M.; Lin, J. J. Macromolecules, 38, 6240-6243 (2005).
[50] Pappas J.; Patel K.; Nauman E. B. J Appl Polym Sci, 95, 1169-1174 (2005).
[51] Hung V. H.; Rudolf H. Chem Mater, 18, 1976-1980 (2006).
[52] Makoto K.; Azusa T.; Arimitsu U.; Toshihisa S.; Hidemi Y. J Appl Polym Sci, 99, 3236-3240 (2006).
[53] Yei, D. R.; Fu, H. K.; Chen, W. Y.; Chang, F. C. J Appl Polym Sci: Part B: Polym Phys, 44, 347-358 (2006).
[54] Saegusa, T. Pure and Appl Chem, 67, 1965 (1995).
[55] Goa, J. G.; Liu, Y. F.; Yang, L. T. Polym Deg and Stab, 63, 19-22 (1999).
[56] Goa, J. G.; Liu, Y. F.; Wang, F. G. Eur Polym J, 37, 207-210 (2001).
[57] Abdalla, M.; Ludwick, A.; Mitchell, T. Polym, 44, 7353-7359 (2003).
[58] Martin, C.; Ronda, J.; Cadiz, V. Polym Sci Part: A Polym Chem, 44, 1701-1710 (2006).
[59] Martin, C.; Ronda, J.; Cadiz, V. Polym Sci Part: A Polym Chem, 44, 3503-3512 (2006).
[60] Ouchi, K.; Honda, H. Fuel 38, 429 (1959).