| 研究生: |
邱毓絜 Chiu, Yu-Jie |
|---|---|
| 論文名稱: |
環狀鰭管式熱交換器之熱傳特性的數值與實驗研究 Numerical and Experimental Study of Heat Transfer Characteristics for Annular Finned Tube Heat Exchangers |
| 指導教授: |
陳寒濤
Chen, Han-Taw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 逆算法 、實驗方法 、數值模擬 、環狀鰭管式熱交換器 、熱傳及流體流動特性 |
| 外文關鍵詞: | Inverse scheme, Numerical simulation, Annular finned tube heat exchangers, Heat transfer and flow fluid characteristics |
| 相關次數: | 點閱:101 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以逆算法搭配實驗溫度量測值,探討不同管徑、鰭片間距以及風速下,單管環狀鰭管式熱交換器之熱傳特性與流動特性。由於鰭片上的熱傳係數可能為不均勻分佈,故將鰭片劃分為數個小區域。之後,利用結合有限差分法、最小平方法及實驗溫度量測值之逆算法來預測鰭片之熱傳係數。為驗證其準確性,本文利用計算流體力學軟體FLUENT與本文逆算法所得之預測值做比較,並探討不同流動模式與網格劃分對於不同條件之物理模型的適用度。
結果顯示環狀圓鰭片之穩態熱傳係數應為位置函數而非常數。於自然對流中,加熱圓管上方存在一低速尾流區,鰭片上半部之平均熱傳係數較下半部為低。於混合對流中,加熱圓管下游存在一低速尾流區,鰭片下游區之平均熱傳係數較上游區為低。數值模擬結果顯示在自然對流及混合對流中分別為Zero-equation紊流模式及RNG紊流模式所得之結果較為準確,且總網格數會隨鰭片間距及風速的增加而上升。此外,流動模式選定及網格測試須與實驗量測值及逆算法預測值相互比較以求得較為準確之結果。模擬結果與本文之皆顯示增加鰭片間距及風速均能提高鰭片之散熱效果。
The present study applies the inverse method and computational fluid dynamics commercial software in conjunction with the experimental method to predict the heat transfer and fluid flow characteristics of annular finned tube heat exchangers. The effects of some physical parameters such as fin spacing, air velocity and tube diameter are examined. Due to the heat transfer coefficient on the fin is non-uniform, the fin is divided into several sub-regions. Later, the inverse method applied finite difference method in conjunction with the least-squares scheme and the experimental data to estimate the heat transfer coefficient on the fins.
The results shows that, there is a low velocity wake region at downstream of the tube. Therefore the heat transfer coefficient at the upstream region of the fin is higher than the downstream region of the fin. The increase of fin spacing and air velocity can improve the cooling effect of the fins. In natural convection, the heat transfer coefficient increases with the increase of the fin to tube diameter ratio. For a fixed air flow velocity, the higher the fins and the closer they are to one another, the lower the heat transfer coefficient on the fin is. Numerical simulation result obtained using zero-equation and RNG k-ε turbulence flow model is more accurate for natural convection and mixed convection respectively.
[1] W.M. Kays, A.L. London, Compact Heat Exchangers, 3rd ed., McGraw-Hill, 1984.
[2] A.D. Kraus, A. Aziz, J. Welty, Extended Surface Heat Transfer, John Wiley and Sons, Inc., 2001.
[3] J.L. Lage, Tube-to-tube Heat Transfer Degradation Effect on Finned-Tube Heat Exchangers, Numerical Heat Transfer Part A, vol.39, pp.321-337, 2001.
[4] F.E.M. Saboya, E.M. Sparrow, Local And Average Heat Transfer Coefficients for One-Row Plate Fin And Tube Heat Exchanger Configurations, ASME Journal of Heat Transfer, vol.96, pp.265-272, 1974.
[5] E.C. Rosman, P. Carajilescov, F.E.M. Saboya, Performance of One- And Two-Row Tube And Plate Fin Heat Exchangers, ASME Journal of Heat Transfer, vol.106, pp.627-632, 1984.
[6] R.L. Webb, Principles of Enhanced Heat Transfer, Wiley, pp.125-153, 1994.
[7] M.N. Özisik, Heat Conduction, 2nd ed., Wiley, Chapter 14, 1993.
[8] K. Kurpisz, A.J. Nowak, Inverse Thermal Problems, Computational Mechanics Publications, Southampton, 1995.
[9] J.H Lin, C.K. Chen, Y.T. Yang, An Inverse Estimation of The Thermal Boundary Behavior of A Heated Cylinder Normal to A Laminar Air Ttream, International Journal of Heat and Mass Transfer, vol.43, pp.3991-4001, 2000.
[10] H.T. Chen, J.P. Song, Y.T. Wang, Prediction of Heat Transfer Coefficient on The Fin Inside One-Tube Plate Finned-Tube Heat Exchangers, International Journal of Heat and Mass Transfer, vol.48, pp.2697-2707, 2005.
[11] H.T .Chen, J.C. Chou, Investigation of Natural-Convection Heat Transfer Coefficient on A Vertical Square Fin of Finned-Tube Heat Exchangers, International Journal of Heat and Mass Transfer, pp.3034-3044, 2006.
[12] H. Ay, J.Y. Jang, J.N. Yeh, Local Heat Transfer Measurements of Plate Finned-Tube Heat Exchangers by Infrared Thermography, International Journal of Heat and Mass Transfer, vol.45, pp.4069-4078, 2002.
[13] C.H. Huang, I.C. Yuan, H. Ay, A Three-Dimensional Inverse Problem in Imaging The Local Heat Transfer Coefficients for Plate Finned-Tube Heat Exchangers, International Journal of Heat and Mass Transfer, vol.46, pp.3629-3638, 2003.
[14] Ş. Yildiz, H. Yüncü, An Experimental Investigation on Performance of Annular Fins on a Horizontal Cylinder in Free Convection Heat Transfer, Heat and Mass Transfer, vol.40, pp.239-251, 2004.
[15] V.T. Morgan, The Overall Convective Heat Transfer from Smooth Circular Cylinder, Advanced In Heat Transfer, vol.11, pp.199-264, 1975.
[16] S.W. Churchill, H.H.S. Chu, “Correlating Equations for Laminar and Turbulent Free Convection from Horizontal Cylinder,” International Journal of Heat and Mass Transfer, vol.18, pp.1049-1053, 1975.
[17] M.S. Mon, U. Gross, Numerical Study of Fin-Spacing Effects in Annular-Finned Tube Heat Exchangers, International Journal of Heat and Mass Transfer, vol.47, pp.1953-1964, 2004.
[18] W.L. Chen, Y.C. Yung, H.L. Lee, Inverse Problem in Determining Convection Heat Transfer Coefficient of an Annular Fin, Energy Conversion and Management, vol.48, pp.1081-1088, 2007.
[19] N. Kayansayan, Thermal characteristics of fin-and-tube heat exchanger cooled by natural convection, International Journal of Heat and Mass Transfer, vol.7, pp.177-188, 1993.
[20] B. Sahin, A. Akkoca, N.A. Ozturk, H. Akilli, Investigations of flow characteristics in a plate fin and tube heat exchanger model composed of single cylinder, International Journal of Heat and Fluid Flow, vol.27, pp.522-530, 2006.
[21] B. Watel, S. Harmand, B. Desmet, Influence of flow velocity and fin spacing on the forced convective heat transfer from an annular-finned tube, JSME International Journal Series, vol.42, pp. 56-64, 1999.
[22] Krischer, O., Kast, W., Wärmelibertragung und Wärmespannungen bei Rippenrohren, VDI-Forschungsheft 474, 1959.
[23] Y. Qiu, M. Tian, Z. Guo, Natural convection and radiation heat transfer of an externally-finned tube vertically placed in a chamber, Heat Mass Transfer, vol.49, pp. 405-412, 2013.
[24] H.T. Chen, W.L. Hsu, Estimation of Heat Transfer on the Fin of Annular-Finned Tube Exchangers in Natural Convection for Various Fin Spacings, International Journal of Heat and Mass Transfer, vol.50, pp.1750-1761, 2007.
[25] G.D. Raithby, K.G.T. Hollands, Natural Convection, Handbook of Heat Transfer Fundamentals, 2nd ed., Rohsenow, W. M., Hartnett, J. P., and Ganic, E. N., eds, McGraw-Hill, 1985.
[26] G.N. Xi, K. Torikoshi, Computation and visualization of flow and heat transfer in finned tube heat exchangers, International Symposium on Heat Transfer, Tsinhua University, pp. 632-637, 1996.
[27] A. Bejan, Heat Transfer, John Wiley & Sons, Inc., pp.53-62, 1993.
[28] J.Y. Jang, H.T. Chen, H. Ay, The Development of High Efficiency Air-Cooled Stream Condenser for the Power plant (2/2), Report of National Council Science, Taiwan, NSC 92-2622-E-006-146, 2005.
[29] V.S. Arpaci, S.H. Kao, and A. Selamet, Introduction to Heat Transfer, Prentice-Hall, pp.588, 1999.
[30] C.D. Jones, L.F. Smith, Optimum Arrangement of Rectangular Fins on Horizontal Surfaces for Free Convection Heat Transfer, ASME Journal of Heat Transfer, vol.92, pp.6-10, 1970.
[31] F.P. Incropera, and D.P. Dewitt, Introduction to Heat Transfer, 3rd ed., John Wiley & Sons, table1.1, pp.8, 1996.
[32] Q. Chen, W. Xu, A zero-equation turbulence model for indoor airflow simulation, Energy and Buildings, vol.28, pp. 137-144, 1998.
[33] B.E. Launder, D.B. Spalding, The numerical computation of turbulent flows, Computer Methods in Applied Mechanics and Engineering, vol. 3, pp. 269-289, 1974.
[34] V. Yakhot, S.A. Orszag, S. Thangam, T.B. Gatski, C.G. Speziale, Development of turbulence models for shear flows by a double expansion technique, Physics of Fluids A, vol.4, pp.1510-1520, 1992.
[35] FLUENT Dynamics Software, FLUENT 4, Lehanon, NH-USA, 2010.
[36] C.H. Huang, I. C. Yuan, H. Ay, An experimental study in determining the local heat transfer coefficients for the plate finned-tube heat exchangers, International Journal of Heat and Mass Transfer, vol.52, pp.3057-3066, 2009.
[37] A. Kumar, J.B. Joshi, A.K. Nayak, P.K. Vijayan, 3D CFD simulation of air cooled condenser-I: natural convection over a circular cylinder, International Journal of Heat and Mass Transfer, vol.7, pp.1265-1283, 2014.
[38] F. Kreith, M.S. Bohn, Principles of Heat Transfer, 5th ed., West Publishing Company, pp.347-348, 1993.
[39] Y.A. Çengel, Heat Transfer-A Practical Approach, 2nd ed., McGraw-Hill, pp.486-488, 2004.
[40] H.T. Chen, W.L. Hsu, Estimation of Heat Transfer Characteristics on a Vertical Annular Circular Fin of Finned-Tube Heat Exchangers in forced Convection,” International Journal of Heat and Mass Transfer, vol.51, pp.1920-1932, 2008.
[41] B. Sahin, N.A. Ozturk, C. Gurlek, Horseshoe vortex studies in the passage of a model plate-fin-and-tube heat exchanger, International Journal of Heat and Fluid Flow, vol.29, pp.340-351, 2008.