簡易檢索 / 詳目顯示

研究生: 曾景助
Tseng, Ching-Chu
論文名稱: 銀奈米漿料塗佈滲入式電極對聚噻吩/二氧化鈦奈米纖維之混成太陽能電池研究
P3HT/Titania Nanofiber Hybrid Photovoltaics with Penetrated Electrodes Deposited by Silver Nanopastes
指導教授: 郭昌恕
Kuo, Chang-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 73
中文關鍵詞: 電紡絲奈米纖維二氧化鈦對聚噻吩銀奈米漿料太陽能電池
外文關鍵詞: Electrospinning, Nanofiber, TiO2, P3HT, Silver pastes, Photovoltics
相關次數: 點閱:76下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   無機二氧化鈦奈米纖維和有機共軛高分子對聚噻吩運用於新型混成太陽能電池。無機二氧化鈦奈米纖維具有任意分布的一維奈米絲結構,不僅提供大量的異質接面表面積,且具有連續的傳導路徑供電子傳遞,對聚噻吩具有光電活性且被用於傳遞電洞,對聚噻吩經由溶劑塗佈法沉積在二氧化鈦奈米纖維上,藉由控制不同濃度的溶劑,則可控制沉積厚度。

      上電極則利用銀奈米漿料塗佈於主動層,銀奈米漿料可深入由二氧化鈦無機奈米纖維和對聚噻吩所形成的主動層,透過適當熱處理後,由銀奈米顆粒形成深入結構之連續電極,此連續電極增加與對聚噻吩的接觸面積並增強電子的收集與傳遞。藉由改變銀奈米漿料的沉積量,整理出所改變的光電性質,包含:開路電壓、短路電流密度、分流電阻與串聯電阻等。

      結果指出,銀奈米漿料透過深入結構的連續電極成功地增強電荷的收集,然而,連續電極亦部分阻礙了入射光的吸收,文中詳述其相關細節,並歸納出由無機二氧化鈦奈米纖維、有機共軛高分子對聚噻吩和銀穿透電極所組成的最佳化新型混成太陽能電池。

      A novel hybrid solar cell was fabricated by the uses of the nanostructured inorganic titania nanofibers and the organic conjugated poly(3-hexyl thiophene) (P3HT). Electrospun titania nanofibers constructed a randomly orientated fiber scaffold that provided not only the large surface area as the heterojunction interface, but also the continuous pathway for the electron collection. P3HT served as the photovoltaic active and hole transfer material was deposited via the solution casting process that generated a conformal P3HT outer layer with controllable thicknesses. Upper electrode was established by utilizing a silver nanoparticle paste which was introduced also by a solution process, followed by a post heat treatment that converted the silver paste to the conductive silver material. More importantly, the silver paste was designed to penetrate into the P3HT/titania fiber scaffold that generated more contact with the P3HT and enhanced the hole collection and transfer. By alternating the silver paste depositions, the photovoltaic performances, including the open circuit voltage, the short circuit current density, the shunt resistance and the series resistance, were carefully investigated. Results indicated that the silver paste successfully improved the charge collection; however the penetrated electrode also partially blocked the incident light with the P3HT layer. Detailed investigations were carried out in this research work, and the optimized photovoltaic device based on the nanostructured P3HT/titania nanofiber and the silver penetrated electrode was presented.

    Abstract I 摘要 II Acknowledgement III Contents IV List of Tables VII List of Illustration VIII Chapter1 Introduction 1 1.1 Solar Cell 1 1.1.1 Organic-inorganic Hybrid Solar Cells 1 1.1.2 Recently Improvement of Hybrid Solar Cell 8 1.2 Titanium Dioxide 9 1.2.1 Properties of TiO2 9 1.2.2 TiO2 Flat Layer 13 1.2.3 Sol-gel Method 14 1.2.4 Electrospinning 15 1.3 Fabrication of One–dimensional Nanostructured Oxides 16 1.3.1 Phase Deposition 18 1.3.2 Electrochemical anodization 19 1.3.3 Hydrothermal synthesis 19 1.3.4 Electrospinning 20 1.4 Performance Characteristics of Photovoltaic 21 1.4.1 Short Circuit Current 21 1.4.2 Open Circuit Voltage 24 1.4.3 Fill Factor 24 Chapter2 Motivation 27 Chapter3 Experimental 29 3.1 Materials and Experimental Instruments 29 3.1.1 Materials 29 3.1.2 Experimental Instruments 29 3.1.3 Electrospinning Apparatus 30 3.2 TiO2 Nanofiber 31 3.2.1 TiO2 thin blocking layer. 31 3.2.2 Prefabricated Layers 32 3.2.3 Electrospinning of PVP/TTIP Nanofiber 33 3.2.4 Hot Pressing Process 34 3.2.5 Calcination 34 3.2.6 Surface Modification by TiCl4 34 3.2.7 Silver NPs/P3HT/Titania NFs solar cells 35 3.2.8 Electroless process for commercial polystyrene beads 35 3.2.9 Fabrication of Polystyrene Nanoparticles from Bulk Polystyrene 38 3.3 Analytical Instruments 39 3.3.1 Scanning Electron Microscopy 39 3.3.2 UV-vis Spectrometer 39 3.3.3 Current-voltage Characterization 39 Chapter4 Result and Discussion 41 4.1 Hot pressuring for Substrate of Ti-mesh 41 4.2 Preparation of PS/Ag core-shell colloids 46 4.2.1 Electroless process for commercial PS nanoparticles 46 4.2.2 Fabrication of Polystyrene Nanoparticles from Bulk Polystyrene 50 4.3   Assembly of Photovoltaic Device 56 Chapter5 Conclusion 68 Chapter6 Reference 69

    1. Green, M.A., Solar cell efficiency tables (version 18). Progress in Photovoltaics: Research and Applications, 2001. 9(4): p. 287.
    2. Markov, D.E., Accurate Measurement of the Exciton Diffusion Length in a Conjugated Polymer Using a Heterostructure with a Side-Chain Cross-Linked Fullerene Layer. The Journal of Physical Chemistry A, 2005. 109(24): p. 5266.
    3. Markov, D.E., Simultaneous enhancement of charge transport and exciton diffusion in poly(p-phenylene vinylene) derivatives. Physical Review B, 2005. 72(4): p. 045217.
    4. Bi, D., Device Performance Related to Amphiphilic Modification at Charge Separation Interface in Hybrid Solar Cells with Vertically Aligned ZnO Nanorod Arrays. The Journal of Physical Chemistry C, 2011. 115(9): p. 3745.
    5. Barth, S., Intrinsic Photoconduction in PPV-Type Conjugated Polymers. Physical Review Letters, 1997. 79(22): p. 4445.
    6. Dvorak, M., Origin of the Variation of Exciton Binding Energy in Semiconductors. Physical Review Letters, 2013. 110(1): p. 016402.
    7. Klenkler, R.A., Charge-carrier mobility in an organic semiconductor thin film measured by photoinduced electroluminescence. Applied Physics Letters, 2006. 88(24): p. 242101.
    8. Tiwari, S., Charge mobility measurement techniques in organic semiconductors. Optical and Quantum Electronics, 2009. 41(2): p. 69.
    9. Lin, Y.-Y., Interfacial Nanostructuring on the Performance of Polymer/TiO2 Nanorod Bulk Heterojunction Solar Cells. Journal of the American Chemical Society, 2009. 131(10): p. 3644.
    10. Yao, K., Interfacial Nanostructuring of ZnO Nanoparticles by Fullerene Surface Functionalization for “Annealing-Free” Hybrid Bulk Heterojunction Solar Cells. The Journal of Physical Chemistry C, 2012. 116(5): p. 3486.
    11. Holder, E., Hybrid nanocomposite materials with organic and inorganic components for opto-electronic devices. Journal of Materials Chemistry, 2008. 18(10): p. 1064.
    12. Saunders, B.R., Nanoparticle–polymer photovoltaic cells. Advances in Colloid and Interface Science, 2008. 138(1): p. 1-23.
    13. Reiss, P., Conjugated polymers/semiconductor nanocrystals hybrid materials-preparation, electrical transport properties and applications. Nanoscale, 2011. 3(2): p. 446.
    14. Cozzoli, P.D., Low-Temperature Synthesis of Soluble and Processable Organic-Capped Anatase TiO2 Nanorods. Journal of the American Chemical Society, 2003. 125(47): p. 14539.
    15. Günes, S., Hybrid solar cells. Inorganica Chimica Acta, 2008. 361(3): p. 581.
    16. Chen, C.-W., Anomalous blueshift in emission spectra of ZnO nanorods with sizes beyond quantum confinement regime. Applied Physics Letters, 2006. 88(24): p. -.
    17. Wu, S., Hybrid Photovoltaic Devices Based on Poly (3-hexylthiophene) and Ordered Electrospun ZnO Nanofibers. The Journal of Physical Chemistry C, 2010. 114(13): p. 6197.
    18. Strein, E., Charge generation and energy transfer in hybrid polymer/infrared quantum dot solar cells. Energy & Environmental Science, 2013. 6(3): p. 769.
    19. Ren, S., Inorganic–Organic Hybrid Solar Cell: Bridging Quantum Dots to Conjugated Polymer Nanowires. Nano Letters, 2011. 11(9): p. 3998.
    20. Reeja-Jayan, B., Effect of interfacial dipoles on charge traps in organic-inorganic hybrid solar cells. Journal of Materials Chemistry A, 2013. 1(10): p. 3258.
    21. Freitas, F.S., Tailoring the interface using thiophene small molecules in TiO2/P3HT hybrid solar cells. Physical Chemistry Chemical Physics, 2012. 14(34): p. 11990.
    22. Canesi, E.V., The effect of selective interactions at the interface of polymer-oxide hybrid solar cells. Energy & Environmental Science, 2012. 5(10): p. 9068.
    23. Weickert, J., Characterization of Interfacial Modifiers for Hybrid Solar Cells. The Journal of Physical Chemistry C, 2011. 115(30): p. 15081.
    24. Goh, C., Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells. Journal of Applied Physics, 2007. 101(11): p. -.
    25. Conings, B., Perovskite-Based Hybrid Solar Cells Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich Approach. Advanced Materials, 2014. 26(13): p. 204.
    26. Qiu, J. , All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. Nanoscale, 2013. 5(8): p. 3245.
    27. Dharani, High efficiency electrospun TiO2 nanofiber based hybrid organic-inorganic perovskite solar cell. Nanoscale, 2014. 6(3): p. 1675.
    28. Carp, O., Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 2004. 32(1–2): p. 33.
    29. Shangguan, W., Physicochemical properties and photocatalytic hydrogen evolution of TiO2 films prepared by sol–gel processes. Solar Energy Materials and Solar Cells, 2003. 80(4): p. 433.
    30. Ovenstone, J., Effect of Hydrothermal Treatment of Amorphous Titania on the Phase Change from Anatase to Rutile during Calcination. Chemistry of Materials, 1999. 11(10): p. 2770.
    31. Tzung-Ying, S., Electrospun Titanium Dioxide Nanofibers for Hydrogen Production by UV-Induced Water Splitting. 2007.
    32. Li, F.B., Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment. Applied Catalysis A: General, 2002. 228(1–2): p. 15.
    33. Feng, B., Characterization of surface oxide films on titanium and adhesion of osteoblast. Biomaterials, 2003. 24(25): p. 4663.
    34. Yoko, T., Photoelectrochemical properties of TiO2 coating films prepared using different solvents by the sol-gel method. Thin Solid Films, 1996. 283(1–2): p. 188.
    35. Cavaliere, S., Electrospinning: designed architectures for energy conversion and storage devices. Energy & Environmental Science, 2011. 4(12): p. 4761.
    36. Garg, K., Electrospinning jets and nanofibrous structures. Biomicrofluidics, 2011. 5(1): p. -.
    37. Taylor, G., Electrically Driven Jets. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1969.313(1515): p. 453.
    38. Garnett, E.C., Silicon Nanowire Radial p−n Junction Solar Cells. Journal of the American Chemical Society, 2008. 130(29): p. 9224.
    39. Baxter, J.B., Nanowire-based dye-sensitized solar cells. Applied Physics Letters, 2005. 86(5): p. -.
    40. Weintraub, B., Optical Fiber/Nanowire Hybrid Structures for Efficient Three-Dimensional Dye-Sensitized Solar Cells. Angewandte Chemie, 2009. 121(47): p. 9143.
    41. Candeloro, P., SnO2 lithographic processing for nanopatterned gas sensors. Journal of Vacuum Science & Technology B, 2005. 23(6): p. 2784.
    42. Vomiero, A., Preparation of Radial and Longitudinal Nanosized Heterostructures of In2O3 and SnO2. Nano Letters, 2007. 7(12): p. 3553.
    43. Pan, Z.W., Nanobelts of Semiconducting Oxides. Science, 2001. 291(5510): p. 1947.
    44. Vayssieres, L., Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions. Advanced Materials, 2003. 15(5): p. 464.
    45. Cao, M., A Simple Route Towards CuO Nanowires and Nanorods. Journal of Nanoscience and Nanotechnology, 2004. 4(7): p. 824.
    46. Lu, X., One-Dimensional Composite Nanomaterials: Synthesis by Electrospinning and Their Applications. Small, 2009. 5(21): p. 2349.
    47. Xu, X., One-Dimensional Nanostructures in Porous Anodic Alumina Membranes. Science of Advanced Materials, 2010. 2(3): p. 273.
    48. Nadarajah, A., Flexible Inorganic Nanowire Light-Emitting Diode. Nano Letters, 2008. 8(2): p. 534.
    49. Galstyan, V., TiO2 nanotubular and nanoporous arrays by electrochemical anodization on different substrates. RSC Advances, 2011. 1(6): p. 1038.
    50. Kim, I.-D., Nanostructured metal oxide gas sensors prepared by electrospinning. Polymers for Advanced Technologies, 2011. 22(3): p. 318.
    51. Zhang, G., Electrospun nanofibers for potential space-based applications. Materials Science and Engineering: B, 2005. 116(3): p. 353-358.
    52. Macías, M., Electrospun mesoporous metal oxide fibers. Microporous and Mesoporous Materials, 2005. 86(1–3): p. 1.
    53. Okuya, M., Porous TiO2 thin films synthesized by a spray pyrolysis deposition (SPD) technique and their application to dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2002. 70(4): p. 425.
    54. Okuya, M., TiO2 thin films synthesized by the spray pyrolysis deposition (SPD) technique. Journal of the European Ceramic Society, 1999. 19(6–7): p. 903.
    55. Zhu, R., Improved adhesion of interconnected TiO2 nanofiber network on conductive substrate and its application in polymer photovoltaic devices. Applied Physics Letters, 2008. 93(1): p. -.
    56. Péchy, P., Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells. Journal of the American Chemical Society, 2001. 123(8): p. 1613.
    57. Barbé, C.J., Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications. Journal of the American Ceramic Society, 1997. 80(12): p. 3157.
    58. Xue, C.-H., Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles. Applied Surface Science, 2012. 258(7): p. 2468.
    59. Song, M.Y., Electrospun TiO 2 electrodes for dye-sensitized solar cells. Nanotechnology, 2004. 15(12): p. 1861.
    60. Onozuka, K., Electrospinning processed nanofibrous TiO2 membranes for photovoltaic applications. Nanotechnology, 2006. 17(4): p. 1026.
    61. Mukherjee, K., Electron transport in electrospun TiO2 nanofiber dye-sensitized solar cells. Applied Physics Letters, 2009. 95(1): p. -.
    62. Yi-Hao, C., Light Propagation and Photovoltaic Performance in P3HT/Titania Nanofiber Heterojunction Devices. 2010.
    63. Stutman, D.R., Mechanism of core/shell emulsion polymerization. Industrial & Engineering Chemistry Product Research and Development, 1985. 24(3): p. 404.
    64. Noh, M.W., Synthesis and characterization of PS-clay nanocomposite by emulsion polymerization. Polymer Bulletin, 1999. 42(5): p. 619.

    下載圖示 校內:2024-09-01公開
    校外:2024-09-01公開
    QR CODE