| 研究生: |
陳弘銘 Chen, Hung-Ming |
|---|---|
| 論文名稱: |
鋯摻雜之鈦酸鋇的製備、分析與介電性質 Preparation, Characterization, and Dielectric Property of Zirconium-Doped Barium Titanates |
| 指導教授: |
黃啓原
Huang, Chi-Yuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 127 |
| 中文關鍵詞: | 鈦酸鋇 、介電常數 、鋯摻雜 、晶體結構 |
| 外文關鍵詞: | Barium titanate, dielectric constant, zirconium doping, crystal structure |
| 相關次數: | 點閱:129 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來的積層陶瓷電容堆疊技術的進步,且由於積層陶瓷電容內部介電層厚度大幅下降,使得電極間電場強度增加,進而產生可靠度的問題。再加上製作積層陶瓷電容時,為了降低成本,因此選用卑金屬作為內電極 (Base metal Electrode, BME);而為了防止卑金屬氧化,因此會使用還原氣氛下進行燒結,但也因此出現半導化的現象。根據過去的研究發現,添加鋯之鈦酸鋇由於可以使還原焓上升,而使得可靠度變得更好;學者[1]認為選擇具有較高能階差的化合物可以適用於高工作電壓的環境,尤其以鋯酸鹽為主之化合物就是具有較高之能階差。綜合以上,本研究將透過不同摻雜比列的Zr4+取代Ti4+的位置,並去觀察添加Zr4+對晶體結構、拉曼光譜、比表面積、微觀結構的變化,最後再探討添加Zr4+對介電常數與絕緣電阻率的影響。
本研究利用固相反應法進行鋯添加於鈦酸鋇之合成,形成Ba(Ti1-xZrx)O3 (x = 0、0.03、0.05、0.1、0.2) 之固溶體,透過X光繞射圖譜與GSAS分析可以觀察到x = 0、0.03較趨向正方晶系;x = 0.05較趨向斜方晶系;x = 0.1較趨向菱方晶系;x = 0.2較趨向立方晶系;配合拉曼光譜的分析的結果發現隨著鋯添加量的增加,拉曼特徵峰會漸漸地寬化且強度變得越來越低;除了添加量x = 0以外,添加量x = 0.03~ 0.2在大約800 cm-1皆有因Zr4+取代Ti4+而產生的峰。為了模仿積層陶瓷電容之燒結條件,將添加量x = 0與x = 0.1的樣品在還原氣氛下燒結,此兩種粉末皆在燒結條件1340℃與1380℃下,相對密度達90%達以上。在電性分析方面,從介電常數與溫度曲線來看,BaTiO3¬在35℃的介電峰值為與shell有關之介電峰值,而在大約130℃為與core有關之介電峰值;而在Ba(Ti0.9Zr0.1)O3,由於PS dopant與添加鋯的關係會出現擴散式相轉換的峰。在室溫下之電阻率方面,在燒結溫度1380℃下,Ba(Ti0.9Zr0.1)O3電阻率小於BaTiO3電阻率,推測其原因與晶粒大小與core-shell structure有關。在介電損耗方面,由於晶粒大小與相對密度的影響,使Ba(Ti0.9Zr0.1)O3在燒結溫度1340℃較1380℃還要大;而BaTiO3在燒結溫度1340℃與1380℃時幾乎相同。
According to past research, the Zr-doped barium titanate can increase the reduction enthalpy, and the compounds mainly composed of zirconate have a higher energy gap. In this study, the solid-phase reaction method was used to synthesize Zr-doped barium titanate to form a solid solution of Ba(Ti1-xZrx)O3 (x = 0, 0.03, 0.05, 0.1, 0.2). Through X-ray diffraction pattern and GSAS analysis, it can be observed that x = 0, 0.03 tends to the tetragonal ; x = 0.05 tends to the orthorhombic; x = 0.1 tends to the rhombohedral; x = 0.2 tends to the cubic. With the analysis of Raman spectroscopy, it is found that as the amount of Zr doping increases, the peak gradually broadens and the intensity becomes lower and lower; in addition to x = 0, x = 0.03~ 0.2 have a peak at about 800 cm-1 due to the substitution of Zr4+ for Ti4+. Both of these two powders (x =0、 0.1¬) have a relative density of more than 90% under sintering conditions of 1340°C and 1380°C. In terms of electrical analysis, from the dielectric constant vs. temperature , the dielectric peak of BaTiO3 at 35°C is the dielectric peak related to the shell, and at about 130°C it is the dielectric peak related to the core; Ba(Ti0.9Zr0.1)O3, due to the PS dopant and Zr doping, there will be a diffusion phase transition peak. In terms of resistivity, Zr doping has no tendency to increase resistivity.
1. Lee, S., W.H. Woodford, and C.A. Randall, Crystal and defect chemistry influences on band gap trends in alkaline earth perovskites. Applied Physics Letters, 2008. 92(20), p.201909.
2. Kingery, W.D., H.K. Bowen, and D.R. Uhlmann, Introduction to ceramics. Second edition ed. Vol. 17. 1976, Canada: John wiley & sons.
3. Moulson, A. and J. Herbert, Electroceramics: Materials, Properties, Applications, Second Edition. 1990, London: Chapman & Hall.
4. Fu, D. and M. Itoh, Role of Ca off-centering in tuning ferroelectric phase transitions in Ba(Zr,Ti)O3 system. Ferroelectric Materials—Synthesis and Characterization, 2015, pp.105-123.
5. Shirane, G., F. Jona, and R. Pepinsky, Some aspects of ferroelectricity. Proceedings of the IRE, 1955. 43(12), pp.1738-1793.
6. Kulcsar, F., A microstructure study of barium titanate ceramics. Journal of the American Ceramic Society, 1956. 39(1), pp.13-17.
7. Kraševec, V., M. Drofenik, and D. Kolar, Topotaxy between BaTiO3 and Ba6Ti17O40. Journal of the American Ceramic Society, 1987. 70(8), pp.C‐193-C‐195.
8. Lee, S., C.A. Randall, and Z.K. Liu, Modified phase diagram for the barium oxide–titanium dioxide system for the ferroelectric barium titanate. Journal of the American Ceramic Society, 2007. 90(8), pp.2589-2594.
9. Lewis, G., C. Catlow, and R. Casselton, PTCR effect in BaTiO3. Journal of the American Ceramic Society, 1985. 68(10), pp.555-558.
10. Lee, S., Z.-K. Liu, M.-H. Kim, and C.A. Randall, Influence of nonstoichiometry on ferroelectric phase transition in BaTiO3. Journal of Applied Physics, 2007. 101(5), p.054119.
11. Yoon, S.H., J.H. Lee, D.Y. Kim, and N.M. Hwang, Effect of the Liquid‐Phase Characteristic on the Microstructures and Dielectric Properties of Donor‐(Niobium) and Acceptor‐(Magnesium) Doped Barium Titanate. Journal of the American Ceramic Society, 2003. 86(1), pp.88-92.
12. Sharma, R., N.H. Chan, and D. Smyth, Solubility of TiO2 in BaTiO3. Journal of the American Ceramic Society, 1981. 64(8), pp.448-451.
13. Hennings, D.F., R. Janssen, and P.J. Reynen, Control of Liquid‐Phase‐Enhanced Discontinuous Grain Growth in Barium Titanate. Journal of the American Ceramic Society, 1987. 70(1), pp.23-27.
14. Lee, J.K., K.S. Hong, and J.W. Jang, Roles of Ba/Ti ratios in the dielectric properties of BaTiO3 ceramics. Journal of the American Ceramic Society, 2001. 84(9), pp.2001-2006.
15. Yoon, D., Tetragonality of barium titanate powder for a ceramic capacitor application. Journal of Ceramic Processing Research, 2006. 7(4), p.343.
16. Boch, P. and J.-C. Niepce, Ceramic Materials: Processes, Property and Application. Hermes Science Publication, 2001.
17. Uchino, K., E. Sadanaga, and T. Hirose, Dependence of the crystal structure on particle size in barium titanate. Journal of the American Ceramic Society, 1989. 72(8), pp.1555-1558.
18. Begg, B.D., E.R. Vance, and J. Nowotny, Effect of particle size on the room‐temperature crystal structure of barium titanate. Journal of the American Ceramic Society, 1994. 77(12), pp.3186-3192.
19. Dufour, L.-C. and C. Monty, Surfaces and interfaces of ceramic materials. Vol. 173. 2012: Springer Science & Business Media.
20. Aoyagi, S., Y. Kuroiwa, A. Sawada, H. Kawaji, and T. Atake, Size effect on crystal structure and chemical bonding nature in BaTiO3 nanopowder. Journal of thermal analysis and calorimetry, 2005. 81(3), pp.627-630.
21. Arlt, G., D. Hennings, and G. De With, Dielectric properties of fine‐grained barium titanate ceramics. Journal of applied physics, 1985. 58(4), pp.1619-1625.
22. Yong-An, H., L. Biao, Z. Yi-Xuan, L. Dan-Dan, Y. Ying-Bang, T. Tao, L. Bo, and L. Sheng-Guo, Grain size effect on dielectric, piezoelectric and ferroelectric property of BaTiO3 ceramics with fine grains. Journal of Inorganic Materials, 2018. 33(7), pp.767-772.
23. Bergeron, C.G. and S.H. Risbud, Introduction to phase equilibria in ceramics. 1984.
24. Buscaglia, M., V. Buscaglia, M. Viviani, P. Nanni, and M. Hanuskova, Influence of foreign ions on the crystal structure of BaTiO3. Journal of the european ceramic society, 2000. 20(12), pp.1997-2007.
25. Xue, L.A., Y. Chen, and R.J. Brook, The influence of ionic radii on the incorporation of trivalent dopants into BaTiO3. Materials Science and Engineering: B, 1988. 1(2), pp.193-201.
26. Zhi, J., A. Chen, Y. Zhi, P.M. Vilarinho, and J.L. Baptista, Incorporation of yttrium in barium titanate ceramics. Journal of the American Ceramic Society, 1999. 82(5), pp.1345-1348.
27. Buscaglia, M.T., M. Viviani, V. Buscaglia, C. Bottino, and P. Nanni, Incorporation of Er3+ into BaTiO3. Journal of the American Ceramic Society, 2002. 85(6), pp.1569-1575.
28. Muller, O., The major ternary structural families. 1974.
29. 吳朗, 電子陶瓷入門. 1992, Taiwan: 全欣.
30. Chowdary, K.R. and E. Subbarao, Liquid phase sintered BaTiO3. Ferroelectrics, 1981. 37(1), pp.689-692.
31. Tolino, D.A. and J.B. Blum, Effect of Ba:Ti Ratio on Densification of LiF‐Fluxed BaTiO3. Journal of the American Ceramic Society, 1985. 68(11), pp.C‐292-C‐294.
32. Hennings, D., A. Schnell, and G. Simon, Diffuse ferroelectric phase transitions in Ba(Ti1‐yZry)O3 ceramics. Journal of the American Ceramic Society, 1982. 65(11), pp.539-544.
33. Dobal, P., A. Dixit, R. Katiyar, Z. Yu, R. Guo, and A. Bhalla, Micro-Raman scattering and dielectric investigations of phase transition behavior in the BaTiO3–BaZrO3 system. Journal of Applied Physics, 2001. 89(12), pp.8085-8091.
34. Sun, Z., Y. Pu, Z. Dong, Y. Hu, X. Liu, and P. Wang, Effect of Zr4+ content on the TC range and dielectric and ferroelectric properties of BaZrxTi1− xO3 ceramics prepared by microwave sintering. Ceramics International, 2014. 40(2), pp.3589-3594.
35. Cai, W., C. Fu, J. Gao, and H. Chen, Effects of grain size on domain structure and ferroelectric properties of barium zirconate titanate ceramics. Journal of Alloys and Compounds, 2009. 480(2), pp.870-873.
36. Saburi, O., Properties of semiconductive barium titanates. Journal of the physical Society of Japan, 1959. 14(9), pp.1159-1174.
37. Che-Yi, S., T. Ming-Ting, L. Chun-Te, and H. Chi-Yuen, Effect of Ba/Ti Ratio on Crystallite Size and Crystalline Phase of BaTiO3 Powders. 日本セラミックス協会 年会・秋季シンポジウム 講演予稿集, 2009. 2009, pp.8-8.
38. Freire, J. and R. Katiyar, Lattice dynamics of crystals with tetragonal BaTiO3 structure. Physical Review B, 1988. 37(4), p.2074.
39. Huang, T.-C., M.-T. Wang, H.-S. Sheu, and W.-F. Hsieh, Size-dependent lattice dynamics of barium titanate nanoparticles. Journal of Physics: Condensed Matter, 2007. 19(47), p.476212.
40. Devi, C.S., G. Kumar, and G. Prasad, Spectroscopic and electrical studies on Nd3+, Zr4+ ions doped nano-sized BaTiO3 ferroelectrics prepared by sol–gel method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015. 136, pp.366-372.
41. McCauley, D.E., M.S. Chu, and M.H. Megherhi, PO2 Dependence of the Diffuse‐Phase Transition in Base Metal Capacitor Dielectrics. Journal of the American Ceramic Society, 2006. 89(1), pp.193-201.
42. Gong, H., X. Wang, S. Zhang, H. Wen, and L. Li, Grain size effect on electrical and reliability characteristics of modified fine-grained BaTiO3 ceramics for MLCCs. Journal of the European Ceramic Society, 2014. 34(7), pp.1733-1739.
校內:2026-08-31公開