簡易檢索 / 詳目顯示

研究生: 林楷哲
Lin, Kai-Che
論文名稱: 中孔洞金屬矽酸鹽與鋁酸鹽材料的合成與應用
Synthesis and Application of Mesoporous Metal Silicate and Metal Aluminate
指導教授: 林弘萍
Lin, Hong-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 79
中文關鍵詞: 矽酸鈦鋁酸鈉鋁酸銅鎳中孔洞材料環氧化蒸汽重組部分氧化
外文關鍵詞: titanium silicate, nickel aluminate, copper/nickel aluminate, epoxidation, hydrogen production
相關次數: 點閱:133下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究主題可分為(1)以有機模板法合成矽酸鈦中孔洞材料,應用於催化丙烯環氧化反應。(2)以無模板法合成鋁酸鎳材料,並嘗試應用於甲醇產氫反應;以氧化鋁為載體,以電鍍的方法處理半導體廠的金屬廢液。(3)以無模板法合成鋁酸銅鎳中孔洞材料,應用於甲醇部分氧化產氫反應。
    矽酸鈦孔洞材料是以CTAB或PEG11000作為有機模板,當作Ti4+保護劑避免自身聚集和提升氧化矽水解縮合速率,避免產生六配位的二氧化鈦聚集。在實驗參數的調控方面,藉由改變水熱反應pH值、水熱反應時間、有機模板含量等實驗參數,控制實驗路徑及最佳合成條件,並應用於催化丙烯環氧化反應。
    以gibbsite活性氧化鋁當作氧化鋁源,Ni(NO3)2為金屬前驅物,經水熱反應脫水形成boehmite(γ-AlO(OH))和Ni2+結構重組,透過調整水熱反應的pH值、水熱反應時間、鍛燒溫度等各種參數,以觀察材料性質與晶型結構的影響,並嘗試應用於甲醇蒸汽重組反應。引入異相成核法的概念,以活性氧化鋁為載體,調整適當的pH值使廢液中的Ni2+沉澱,並以重複塗佈法重複回收金屬離子以達到濃縮的效果,改變不同電流、電鍍時間及電解液之pH值探討電鍍的效果,處理過後之廢液其Ni2+濃度可低於1 ppm,符合放流水標準。
    結合Cu(NO3)2和Ni(NO3)2為金屬前驅物,與活性氧化鋁經水熱反應產生結構重組,透過調整水熱反應的pH值、水熱反應時間及前驅物含量等各種參數來觀察材料結構的影響;且提高Ni2+添加量不僅能提高觸媒活性位的產生,也能增加的Cu2+分散性,避免形成氧化銅聚集,最後嘗試以雙金屬鋁酸鹽孔洞材料應用於甲醇部分氧化產氫反應。

    Titanium silicate is synthesized for the epoxidation of propene and nickel aluminate and copper/nickel aluminate are prepared for the methanol reforming and partial oxidation reaction, respectively, of hydrogen. The titanium silicate is synthesized in a facile and novel route using cetyltrimethylammonium bromide (CTAB) or polyethylene glycol 11000 (PEG11000) as organic templates. The surfactants disperse the titanium species by chelation of the functional groups and improve the condensation rate of the silica, thereby preventing the titanium from aggregating to form anatase titanium oxide (TiO2). For the CTAB surfactant, the optimal synthesis conditions are a pH value of 4.0, a hydrothermal time of 16 hours, and a CTAB-to-silicate ratio of 0.5. For the PEG11000 surfactant, the optimal pH value is 7.0 and the PEG11000-to-silicate ratio is 0.1. For both surfactants, the synthesized mesoporous titanium silicate is used to catalyze the epoxidation of propene with oxidant cumene peroxide. The conversion and selectivity rates are found to be 89.5% and 94.6 %, respectively.
    Nickel aluminate and copper/nickel aluminate are synthesized without surfactants using low-cost activated alumina as the aluminate source. For the nickel aluminate synthesized with a nickel-to-alumina ratio of 0.125, the methanol reforming reaction produces hydrogen with only a very low concentration of carbon monoxide. For the copper/nickel aluminate synthesized at pH 9.0 with a hydrothermal treatment time of 24 hours and a calcination temperature of 600oC,the partial oxidation of methanol has a conversion of 100% and a selectivity of 100%.

    第一章 緒論 1 1.1中孔洞材料 1 1.2矽酸鹽的基本概念 4 1.3鋁氧化物的基本概念 6 1.4 Ti-silicate觸媒之合成方法 7 1.5環氧丙烷的簡介與製備 9 1.6氫氣的簡介與製備 11 第二章 合成與鑑定 13 2.1化學藥品 13 2.2實驗合成步驟及流程示意圖 14 2.2.1以CTAB為有機模板合成矽酸鈦孔洞材料 14 2.2.2以PEG11000為有機模板合成矽酸鈦孔洞材料 15 2.2.3修飾疏水基於矽酸鈦孔洞材料 16 2.2.4以無模板法合成鋁酸鎳孔洞材料 17 2.2.5以無模板法合成鋁酸銅鎳孔洞材料 18 2.3儀器鑑定分析 19 2.3.1漫反射式紫外光-可見光光譜法(UV-Vis Diffuse Reflection Spectroscopy;DR-UV) 19 2.3.2 X-射線粉末繞射光譜(Powder X-Ray Diffraction; PXRD) 20 2.3.3.全反射红外光谱法 (Attenuated Total Reflectance;ATR) 21 2.3.4.穿透式電子顯微鏡 (Transmission Electron Microscopy;TEM) 21 2.3.5.熱重分析儀 (Thermal Gravimetric Analysis;TGA) 22 2.3.6.氮氣等溫吸附/脫附測量(N2 Adsorption/Desorption Isotherm) 22 第三章 以有機模板合成高分散度矽酸鈦中孔洞材料 28 3.1 研究目的與動機 28 3.2 以溴化十六烷基三甲銨(CTAB)為有機模板合成矽酸鈦孔洞材料 29 3.2.1選擇反應pH值 29 3.2.2調整水熱時間對產物的影響 31 3.2.3調整CTAB含量對產物的影響 32 3.3 以高分子PEG11000為有機模板合成矽酸鈦孔洞材料 34 3.3.1選擇反應pH值 34 3.3.2調整高分子PEG11000含量的影響 36 3.4 矽酸鈦應用於丙烯環氧化 37 第四章 以無模板合成高分散度鋁酸鎳孔洞材料 38 4.1 研究目的與動機 38 4.2 無模板法合成鋁酸鎳 39 4.2.1 選擇反應pH值 39 4.2.2 選擇水熱時間對nickel-aluminate產物的影響 43 4.2.3 改變反應時Ni/Al2O3之莫耳比例 46 4.2.4 改變鍛燒溫度對nickel-aluminate產物的影響 47 4.2.5 使用不同鋁源合成Ni/Al2O3 49 4.3 鋁酸鎳孔洞材料應用於甲醇蒸汽重組反應 51 4.4 以氧化鋁為載體移除工業廢液之鎳離子 53 4.4.1 模擬廢水實驗結果-pH值對電解處理效果 53 4.4.2 電流對電解處理效果 55 4.4.3 工業金屬廢液之實驗結果 56 第五章 以無模板合成高分散度鋁酸銅鎳材料 58 5.1研究目的與動機 58 5.2無模板法合成 copper/nickel-aluminate 59 5.2.1選擇反應pH值 59 5.2.2選擇水熱時間對copper/nickel-aluminate的影響 62 5.2.3調整Cu/Al莫耳比例對產物的影響 64 5.2.4改變鎳含量對copper/nickel-aluminate的影響 66 5.2.5鍛燒溫度對產物的影響 68 5.2.6反應機構的推導 69 5.3 Copper/nickel-aluminate應用於部分氧化反應 71 5.3.1部分氧化甲醇製氫反應 71 5.3.2 Copper/nickel-aluminate反應前後之比較 73 第六章 總結 74 參考文獻 76

    1. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature,1992, 359, 710-712.
    2. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834-10843.
    3. J. Fan, C. Z. Yu, T. Gao, J. Lei, B. Z. Tian, L. M. Wang, Q. Luo, B. Tu, W. Z. Zhou and D. Y. Zhao, Angew Chem Int Edit, 2003, 42, 3146-3150.
    4. A. Vinu, V. Murugesan and M. Hartmann, Chem Mater, 2003, 15, 1385-1393.
    5. H. P. Lin, C. L. Kuo, B. Z. Wan and C. Y. Mou, J Chin Chem Soc-Taip, 2002, 49, 899-906.
    6. V. Alfredsson and M. W. Anderson, Chem Mater, 1996, 8, 1141-1146.
    7. H. P. Lin and C. Y. Mou, Accounts Chem Res, 2002, 35, 927-935.
    8. J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y. U. Kwon, O. Terasaki, S. E. Park and G. D. Stucky, J Phys Chem B, 2002, 106, 2552-2558.
    9. J. N. Cha, T. J. Deming, D. E. Morse and G. D. Stucky, Abstr Pap Am Chem S, 2000, 219, 837-837.
    10. Z. R. R. Tian, J. Liu, J. A. Voigt, B. McKenzie and H. F. Xu, Angew Chem Int Edit, 2003, 42, 414.
    11. F. Noll, M. Sumper and N. Hampp, Nano Lett, 2002, 2, 91-95.
    12. Z. Y. Zhong, Y. D. Yin, B. Gates and Y. N. Xia, Adv Mater, 2000, 12, 206.
    13. P. Jiang, J. F. Bertone and V. L. Colvin, Science, 2001, 291, 453-457.
    14. C. E. Fowler, D. Khushalani and S. Mann, Chem Commun, 2001, 2028-2029.
    15. Q. S. Huo, J. L. Feng, F. Schuth and G. D. Stucky, Chem Mater, 1997, 9, 14.
    16. Y. F. Lu, H. Y. Fan, A. Stump, T. L. Ward, T. Rieker and C. J. Brinker, Nature, 1999, 398, 223-226.
    17. C. E. Fowler, D. Khushalani, B. Lebeau and S. Mann, Adv Mater, 2001, 13, 649-652.
    18. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science, 1998, 273, 548.
    19. H. P. Lin and C. Y. Mou, Acc. Chem. Rev, 2002, 35, 927.
    20. C. J. Brinker, G. W. Scherer, Journal of Non – Crystalline Solids 1985, 70, 301
    21. K. Wefers, C. Misra, Alcoa Technical Paper N◦19, 1987, 47
    22. C. Misra, J. I. Kruschwitz, kirk-Othmer Encyclopedia of Chemical Technology, 1978, 2, 302.
    23. C. N. Satterfield, Heterogeneous Catalyst in Practice: hydrogen, 1980, 87-91.
    24. 吳榮宗, 工業觸媒概論, 黎明書局, 新竹, 1989.
    25. R. A. Sheldon, M. Wallau, I. W. C. E. Arends and U. Schuchardt, Acc. Chem. Res. 1998, 31, 485.
    26. A. Voigt, R. Murugavel, M. L. Montero, H. Wessel, F. Q. Liu, H. W. Roesky, I. Uson, T. Albers and E. Parisini, Angew. Chem. Int. Ed. 1997, 36, 1001.
    27. R. Murugavel and H. W. Roesky, Angew. Chem. Int. Ed. 1997, 36, 477.
    28. M. G. Clerici, G. Bellussi and U. Romano, J. Catal. 1991, 129, 159.
    29. C. B. Dartt, C. B. Khouw, H. X. Li and M. E. Davis, Abstr. Pap. Am. Chem. S. 1993, 206, 57.
    30. J. C. van der Waal, P. J. Kooyman, J. C. Jansen and H. van Bekkum, Micropor. Mesopor. Mat. 1998, 25, 43.
    31. A. Corma, V. Fornes, M. T. Navarro and J. Perezpariente, J. Catal. 1994, 148, 569.
    32. M. D. Alba, Z. H. Luan and J. Klinowski, J. Phys. Chem. 1996, 100, 2178.
    33. R. Mokaya, W. Jones, Z. H. Luan, M. D. Alba and J. Klinowski, Catal. Lett. 1996, 37, 113.
    34. B. L. Newalkar, J. Olanrewaju and S. Komarneni, Chem. Mater. 2001, 13, 552
    35. D. R. Rolison, Science 2003, 299, 1698.
    36. R. A. Sheldon, M. Wallau, I. W. C. E. Arends and U. Schuchardt, Acc. Chem. Res , 1998, 31, 485.
    37. A. Voigt, R. Murugavel, M. L. Montero, H. Wessel, F. Q. Liu, H. W. Roesky, I. Uson, T. Albers and E. Parisini, Angew. Chem. Int. Ed. 1997, 36, 1001.
    38. R. Murugavel and H. W. Roesky, Angew. Chem. Int. Ed. 1997, 36, 477.
    39. Y. Chi, T. Y. Chou, Y. J. Wang, S. F. Huang, A. J. Carty, L. Scoles, K. A. Udachin, S. M. Peng and G. H. Lee, Organometallics. 2004, 23, 95
    40. F. A. C. Garcia, J. C. M. Silva, J. L. de Macedo, J. A. Dias, S. C. L. Dias and G. N. R. Filho, Micropor. Mesopor. Mat. 2008, 113, 562
    41. M. Plabst, L. B. McCusker and T. Bein, J. Am. Chem. Soc. 2009, 131, 18112
    42. M. Haruta, N. Yamada, T. Kobayashi and S. Iijima, J. Catal., 1989, 115, 301
    43. R. Nares, J. Ramirez, A. Gutierrez-Alejandre, C. Louis and T. Klimova, J. Phys. Chem. B, 2002, 106, 13287
    44. M. Liu, X. Ye, Y. Liu, X. Wang, Y. Wen, H. Sun, B. Li, Ind. Eng. Chem. Res. 2015, 54, 5416–5426
    45. V. Russo, R. Tesser, E. Santacesaria, M. Di Serio, Ind. Eng. Chem. Res., 2012, 52 ,1168
    46. T. Alexander, A. Moulijn, and M. Weckhuysen, Ind. Eng. Chem. Res., 2006, 45, 3447-3459
    47. F. Wesley, B. Rourke, O. Darbishire, Journal of Food Science, 1965, 30, 1037-1042
    48. V. Russo, R. Tesser, E. Santacesaria, M. Di Serio, Ind. Eng. Chem. Res. , 2012 , 52, 1168-1178.
    49. J. Tsuji, J. Yamamoto, M. Ishino, N. Oku, Development of new propylene oxide manufacturing process, Sumitomo Kagaku , 2006, 1 ,4
    50. M. Balat, International Journal of Hydrogen Engry, 2001, 26, 13-28
    51. A. Iulianelli, P. Ribeirinha, A. Mendes, A. Basile, Renewable and Sustainable Energy Reviews,2014, 29, 355-368
    52. R. Palo, R. Palo, R. Palo, Chemical Reviews, 2007, 10, 3992-4021
    53. L. Alejo, R. Lago, M. A. Peña, J. L. G. Fierro, Applied Catalysis A: General, 1997, 162, 281-297.
    54. G. Deo, I. E. Wachs, Journal of Catalysis, 1994, 146, 323-334.
    55. S. Velu, K. Suzuki, M. Okazaki, M. P. Kapoor, T. Osaki, F. Ohashi, Journal of Catalysis, 2000, 194, 373-384
    56. M. Turco, G. Bagnasco, U. Costantino, F. Marmottini, T. Montanari, G. Ramis, G. Busca, Journal of Catalysis, 2004, 228, 43-55
    57. T. Blasco, A. Corma, M. T. Navarro, J. Perez Pariente, J. Catal., 1995,156,65
    58. Zhang, W. H.; Lu, J.; Han, B.; Li, M.; Xiu, J.; Ying, P.; Li, C. Chem. Mater. 2002, 14, 3413
    59. Y. Shiraishi, N. Saito, T. Hirai, J. Am. Chem. Soc., 2005, 127, 12820
    60. M. Fukuda, N. Tsunoji, Y. Yagenji, Y. Ide, S. Hayakawa, M. Sadakane and T. Sano, J. Mater. Chem. A, 2015, 3, 15280
    61. D. Chandra, N. K. Mal, M. Mukherjee, A. Bhaumik, Journal of Solid State Chemistry, 2006, 179, 1802-1807
    62. L. Guanzhong, Z. Xiaobin, Catalysis Letters, 1999, 58, 67-70.
    63. W. Jiajun, Y. Geping, S. Yuyan, Z. Sheng, W. Zhenbo, G. Yunzhi, Journal of Power Sources, 2007, 171, 331-339.
    64. A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Nano Lett,2005,5,667-673
    65. A. Hironori, T. Kazuhiko, M. Takehiko, S. Yoshihiro, CJS Journals, 1984, 13, 1607-1610
    66. Y. Peidong, Z. Dongyuan, I. M. David, F. C. Bradley, D. S. Galen, Nature, 1998, 396, 152-155.
    67. F. Liping , L. Wentao , C. Huimin, X. Feng, H. Lizhi, E. H. Peter, C. B. Hans, W. Dongsheng, RSC Advances, 2015, 5, 18866-18874.
    68. A. M. Silva, A.P.M.G.Barandas, L. O. O. Costa, L. E. P. Borges, L. V. Mattos, F. B. Noronha, Catalysis Today, 2007, 129, 297-304.
    69. A. W. Bryson, K. A. Dardis, Water SA, 1980, 6, 85-87.
    70. S. E. Bailey, T. J. Olin, R. M. Bricka, D. D. Adrian, Water Research, 1999, 33, 2469-2479.
    71. 羅科顯, 2004, 電解和離子交換法回收含銅廢液及淤泥中的銅金屬。桃園:元智大學。
    72. A.G. Maria , K. K. Sotiria , E. T. Panagiotis, Applied Catalysis B: Environmental, 2004, 49, 135-144.
    73. Y. Jiaguo, Q. Lifang, J. Mietek, . J. Phys. Chem. C, 2010, 114, 13118-13125.
    74. A. Fabien, D. Claude, D. Daniel, Catalysis Communications, 2002, 3, 263-267.
    75. Y. J. Tu, Y. W. Chen, Ind. Eng. Chem. Res., 1998, 37, 2618-2622.
    76. M. Fernando, B. Graciela, J. Matı́as, L. Miguel, Applied Catalysis A: General, 2003, 238, 41-54.
    77. S. Sanjay, G. C. Jadeja, P. Jigisha, RSC Advances, 2016,6, 1649-1658.

    下載圖示 校內:2022-06-24公開
    校外:2022-06-24公開
    QR CODE