| 研究生: |
侯宜辰 Hou, Yi-Chen |
|---|---|
| 論文名稱: |
碳黑對電極在使用鈷系統氧化還原電解質之染料敏化太陽能電池上的應用 Application of Carbon Black Counter Electrodes for Dye-Sensitized Solar Cells Employing Cobalt-Based Redox Electrolyte |
| 指導教授: |
李玉郎
Lee, Yuh-Lang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 160 |
| 中文關鍵詞: | 染料敏化太陽能電池 、對電極 、碳黑 、鈷錯合物電解質 、穿透度 |
| 外文關鍵詞: | Dye-sensitized solar cell, Counter electrode, Carbon black, Cobalt-based redox electrolyte, Transparent |
| 相關次數: | 點閱:62 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈷系統氧化還原電解質因具有較正的氧化還原電位與較低的吸光競爭性,近年來被視為取代傳統碘氧化還原對,提升染敏電池光電轉換效能的有效方法。本研究之目的在開發適用於鈷錯合物電解質的碳黑對電極,以取代傳統的白金電極。首先對染料的浸泡時間、鈷錯合物氧化還原對比例、以及電解質濃度等條件進行優化。碳黑電極之製作是以市售的導電碳黑為主材料,利用乙基纖維素為分散劑、乙醇為溶劑來配製碳黑分散液,再藉由旋轉塗佈法將碳黑沉積於導電玻璃上來製備碳黑電極。由電化學阻抗頻譜、塔佛極化分析、及循環伏安法等分析結果顯示,乙基纖維素之存在會增加電極與電解質之間的電荷傳輸阻力,降低碳黑電極的效能。但碳黑電極經熱處理後不僅與白金電極有相近之電化學表現,更呈現比白金電極更低之電荷傳輸阻力。此碳黑對電極應用於電池元件中可得到7.18%的光電轉換效率,此表現與應用白金對電極之元件相當(7.14%)。此外,本研究亦藉由調控碳黑分散液中乙基纖維素及碳黑的含量來控制碳黑在電極上的沉積量,製備具高透明度的碳黑電極,並應用於製備雙面照射元件以及串級結構電池。結果顯示,具相近穿透度的碳黑與白金電極,兩者所製備之電池之轉化效率亦相近。將穿透度73% 之碳黑電極用在雙面照射元件中,太陽光自光電極側及對電極側照射所測得之元件效率值小於1%,而利用碳黑對電極所製備的串級電池,可將光電轉換效率提升至7.63%。本研究亦進一步使用高消光係數之有機染料,並搭配碳黑對電極,所製備出的元件可達到8.80%之光電轉換效率。
On account of a more positive redox potential and less competitions for light adsorption, cobalt-based redox electrolyte has been considered as a great candidate replacing the traditional iodide-based electrolyte to boost the power conversion efficiency of a dye-sensitized solar cell. The purpose of this study is to develop a carbon black counter electrode manufacturing process to replace conventional platinum electrode for dye-sensitized solar cells employing cobalt-based redox electrolyte. This research began from optimizing some parameters in fabricating solar cell devices, such as the immersion time of sensitizer, redox ratios of cobalt-based electrolyte, and electrolyte concentrations. The fabrication of carbon black utilizing commercial carbon black with high electrical conductivity. A carbon black dispersion was first prepared by mixing carbon black powders and ethyl cellulose in ethanol, and then the carbon back thin film on FTO glass could be deposited by employing the spin-coating method. From the results of electrochemical impedance spectra, Tafel polarization, and cyclic voltammetry, it showed that the existence of ethyl cellulose would hinder the catalytic activity of carbon black toward the redox reaction in cobalt-based electrolytes and increase the charge transfer resistance at electrode/electrolyte interface, thereby suppressing the cell performance. However, the heat-treated carbon black electrode not only displayed a comparable electrocatalytic performance related to platinum electrode, but also represented a lower charge transfer resistance. Besides, the solar cell device employing a heat-treated carbon black electrode possessed a power conversion efficiency of 7.18%, which was similar to that measured from a device with platinum electrode (7.14%). Furthermore, the contents of ethyl cellulose and ethanol in carbon black dispersions were adjusted to increase the transparency of carbon black electrodes. There is no obvious difference in cell performance between the cell devices prepared by using carbon black and platinum counter electrodes, which both performed a nearly identical transparency. In addition, the carbon black electrode with a 73% transmittance was further applied to fabricating cell devices for dual side illumination or with a tandem structure. It indicated that the discrepancy in power conversion efficiencies of a cell device was less than 1% as the cell was illuminated on photoelectrode and on counter electrode. Moreover, by composing a tandem structure with all carbon black counter electrodes, the power conversion efficiency could be enhance to 7.63%. At last, the highest power conversion efficieny 8.80% could be achieved by ultilizing organic sensitizer with a carbon black counter electrode.
[1] R.E. Smalley, "Future global energy prosperity: the terawatt challenge", MRS Bull., vol. 30, p. 412, 2005.
[2] R.F. Service, "Is it time to shoot for the sun?", Science, vol. 309, p. 548, 2005.
[3] N.S. Lewis, "Toward cost-effective solar energy use", Science, vol. 315, p. 798, 2007.
[4] "Best research-cell efficiencies", NREL, vol. p. 2016.
[5] T.W. Hamann, "The end of iodide? Cobalt complex redox shuttles in DSSCs", Dalton Trans., vol. 41, p. 3111, 2012.
[6] H. Tsubomura, M. Matsumura, Y. Nomura, "Dye sensitized zinc oxide : aqueous electrolyte : platinum photocell", Nature, vol. 261, p. 402, 1976.
[7] B. O'Regan, M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films", Nature, vol. 353, p. 737, 1991.
[8] EVONIK industries, http://www.aerosil.com/product/aerosil/en/industries/electronics/dye-sensitized-solar-cells/Pages/default.aspx
[9] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.-i. Fujisaw, M. Hanaya, "Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes", Chem. Commun., vol. 51, p. 15894, 2015.
[10] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, "Dye-sensitized solar cells", Chem. Rev., vol. 110, p. 6595, 2010.
[11] M. Grätzel, "Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells", J. Photochem. Photobiol. A-Chem., vol. 164, p. 3, 2004.
[12] B. Wang, L.L. Kerr, "Dye sensitized solar cells on paper substrates", Sol. Energy Mater. Sol. Cells, vol. 95, p. 2531, 2011.
[13] X. Huang, S. Huang, Q. Zhang, X. Guo, D. Li, Y. Luo, Q. Shen, T. Toyoda, Q. Meng, "A flexible photoelectrode for CdS/CdSe quantum dot-sensitized solar cells (QDSSCs)", Chem. Commun., vol. 47, p. 2664, 2011.
[14] T. Miyasaka, "Toward printable sensitized mesoscopic solar cells: light-harvesting management with thin TiO2 films", J. Phys. Chem. Lett., vol. 2, p. 262, 2011.
[15] C.H. Lee, W.H. Chiu, K.M. Lee, W.F. Hsieh, J.M. Wu, "Improved performance of flexible dye-sensitized solar cells by introducing an interfacial layer on Ti substrates", J. Mater. Chem., vol. 21, p. 5114, 2011.
[16] S. Ito, N.C. Ha, G. Rothenberger, P. Liska, P. Comte, S.M. Zakeeruddin, P. Péchy, M.K. Nazeeruddin, M. Grätzel, "High-Efficiency (7.2%) Flexible Dye-Sensitized Solar Cells with Ti-Metal Substrate for Nanocrystalline-TiO2 Photoanode", Chem. Commun., vol. 38, p. 4004, 2006.
[17] H.C. Weerasinghe, P.M. Sirimanne, G.V. Franks, G.P. Simon, Y.B. Cheng., "Low temperature chemically sintered nano-crystalline TiO2 electrodes for flexible dye-sensitized solar cells", J. Photochem. Photobiol. A-Chem., vol. 213, p. 30, 2010.
[18] M. Grätzel, "Photoelectrochemical cells", Nature, vol. 414, p. 338, 2001.
[19] O.K. Varghese, M. Paulose, C.A. Grimes, "Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells", Nat. Nanotechnol., vol. 4, p. 592, 2009.
[20] X. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa, C.A. Grimes, "Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications", Nano Lett., vol. 8, p. 3781, 2008.
[21] J. Jiu, S. Isoda, F. Wang, M. Adachi, "Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film", J. Phys. Chem. B, vol. 110, p. 2087, 2006.
[22] B. O’Regan, M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films", Nature, vol. 353, p. 737, 1991.
[23] J. Ferber, J. Luther, "Computer simulations of light scattering and absorption in dye-sensitized solar cells", Sol. Energy Mater. Sol. Cells, vol. 54, p. 265, 1998.
[24] T. Yamaguchi, N. Tobe, D. Matsumoto, H. Arakawa, "Highly efficient plastic substrate dye-sensitized solar cells using a compression method for preparation of TiO2 photoelectrodes", Chem. Commun., vol. p. 4767, 2007.
[25] S. Ito, P. Chen, P. Comte, M.K. Nazeeruddin, P. Liska, P. Péchy, M. Grätzel, "Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells", Prog. Photovolt: Res. Appl., vol. 15, p. 603, 2007.
[26] Y. Li, J. Hagen, W. Schaffrath, P. Otschik, D. Haarer, "Titanium dioxide films for photovoltaic cells derived from a sol–gel process", Sol. Energy Mater. Sol. Cells, vol. 56, p. 167, 1999.
[27] W. Shockley, H.J. Queisser, "Detailed Balance Limit of Efficiency of p-n Junction Solar Cells", J. Appl. Phys., vol. 32, p. 510, 1961.
[28] M. Grätzel, "Recent advances in sensitized mesoscopic solar cells", Acc. Chem. Res., vol. 42, p. 11, 2009.
[29] M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humpbry-Baker, E. Miiller, P. Liska, N. Vlachopoulos, M. Gratzel, "Conversion of light to electricity by cis-XzBis( 2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium (II) charge-transfer sensitizers (X = C1-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes", J. Am. Chem. Soc., vol. 115, p. 6382, 1993.
[30] M.K. Nazeeruddin, P. Péchy, M. Grätzel, "Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato–ruthenium complex", Chem. Commun., vol. 18, p. 1705, 1997.
[31] M. Grätzel, "Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells", J. Am. Chem. Soc., vol. 123, p. 2001.
[32] M. Grätzel, "Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers", J. Am. Chem. Soc., vol. 127, p. 16835, 2005.
[33] P. Wang, S.M. Zakeeruddin, J.E. Moser, M.K. Nazeeruddin, T. Sekiguchi, M. Grätzel, "A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte", Nat. Mater., vol. 2, p. 402, 2003.
[34] Y. Liu, J.R. Jennings, Y. Huang, Q. Wang, S.M. Zakeeruddin, M. Grätzel, "Cobalt redox mediators for ruthenium-based dye-sensitized solar cells: a combined impedance spectroscopy and near-IR transmittance study", J. Phys. Chem. C, vol. 115, p. 18847, 2011.
[35] C.-Y. Chen, M. Wang, J.-Y. Li, N. Pootrakulchote, L. Alibabaei, C.-h. Ngoc-le, J.-D. Decoppet, J.-H. Tsai, C. Grätzel, C.-G. Wu, S.M. Zakeeruddin, M. Grätzel, "Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells", ACS Nano, vol. 3, p. 3103, 2009.
[36] Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang, P. Wang, "High-Efficiency Dye-Sensitized Solar Cells: The Influence of Lithium Ions on Exciton Dissociation, Charge Recombination, and Surface States", ACS Nano, vol. 4, p. 6032, 2010.
[37] Y. Cao, Y. Bai, Q. Yu, Y. Cheng, S. Liu, D. Shi, F. Gao, P. Wang, "Dye-sensitized solar cells with a high absorptivity ruthenium sensitizer featuring a 2-(hexylthio)thiophene conjugated bipyridine", J. Phys. Chem. C, vol. 113, p. 6290, 2009.
[38] E. Mosconi, J.-H. Yum, F. Kessler, C.J.G. García, C. Zuccaccia, A. Cinti, M.K. Nazeeruddin, M. Grätzel, F.D. Angelis, "Cobalt electrolyte/dye interactions in dye-sensitized solar cells: a combined computational and experimental study", J. Am. Chem. Soc., vol. 134, p. 19438, 2012.
[39] T. Bessho, S.M. Zakeeruddin, C.-Y. Yeh, E.W.-G. Diau, M. Grätzel, "Highly efficient mesoscopic dye-sensitized solar cells based on donor–acceptor-substituted porphyrins", Angew. Chem.-Int. Edit., vol. 122, p. 6796, 2010.
[40] A. Yella, H.-W. Lee, H.N. Tsao, A.K.C. C. Yi, M.K. Nazeeruddin, E.W.-G. Diau, C.-Y. Yeh, S.M. Zakeeruddin, M. Grätzel, "Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency", Science, vol. 334, p. 629, 2011.
[41] C.-L. Wang, Y.-C. Chang, C.-M. Lan, C.-F. Lo, E.W.-G. Diau, C.-Y. Lin, "Enhanced light harvesting with π-conjugated cyclic aromatic hydrocarbons for porphyrin-sensitized solar cells", Energy Environ. Sci., vol. 4, p. 1788, 2011.
[42] S. Mathew, A. Yella, P. Gao, R. H.-Baker, B.F.E. Curchod, N.A.-. Astani, I. Tavernall, U. Rothlisberger, M.K. Nazeeruddin, M. Grätzel, "Dye-sensitized solar cells with 13% efficiency achieved through the molecule engineering of porphyrin sensitizers", Nat. Chem., vol. 6, p. 242, 2014.
[43] S. Ito, S.M. Zakeeruddin, R. H.-Baker, P. Liska, R. Charvet, P. Comte, M.K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida, M. Grätzel, "High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode Thickness", Adv. Mater., vol. 18, p. 1202, 2006.
[44] Y.-S. Yen, H.-H. Chou, Y.-C. Chen, C.-Y. Hsu, J.T. Lin, "Recent developments in molecule-based organic materials for dye-sensitized
solar cells", J. Mater. Chem., vol. 22, p. 8734, 2012.
[45] S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, P. Comte, P. Péchy, M. Grätzel, "High conversion efficiency organic dye-sensitized solar cells with a novel indoline dye", Chem. Commun., vol. 41, p. 2008.
[46] G. Zhang, H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu, P. Wang, "High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary π-conjugated spacer", Chem. Commun., vol. 16, p. 2198, 2009.
[47] W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan, P. Wang, "Efficient dye-sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks", Chem. Mat., vol. 22, p. 1915, 2010.
[48] W. Xiang, W. Huang, U. Bach, L.Spiccia, "Stable high efficiency dye-sensitized solar cells based on a cobalt polymer gel electrolyte", Chem. Commun., vol. 49, p. 8997, 2013.
[49] L.-L. Li, E.W.-G. Diau, "Porphyrin-sensitized solar cells", Chem. Soc. Rev., vol. 42, p. 291, 2013.
[50] S.M. Feldt, E.A. Gibson, E. Gabrielsson, L. Sun, G. Boschloo, A. Hagfeldt, "Design of organic dyes and cobalt polypyridine redox mediators for high-efficiency dye-sensitized solar cells", Journal of the American Chemical Society, vol. 132, p. 16714, 2010.
[51] C. Zhang, Y. Huang, Z. Huo, S. Chen, S. Dai, "Photoelectrochemical Effects of Guanidinium Thiocyanate on Dye-Sensitized Solar Cell Performance and Stability", J. Phys. Chem. C, vol. 113, p. 21779, 2009.
[52] F. Hao, P. Dong, Q. Luo, J. Li, J. Lou, H. Lin, "Recent advances in alternative cathode materials for iodine-free dye-sensitized solar cells", Energy Environ. Sci., vol. 6, p. 2003, 2013.
[53] M. Wang, N. Chamberland, L. Breau, J.-E. Moser, R. Humphry-Baker, B. Marsan, S.M. Zakeeruddin, M. Grätzel, "An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells", Nat. Chem., vol. 2, p. 385, 2010.
[54] C.-Y. Hsu, Y.-C. Chen, R.Y.-Y. Lin, K.-C. Hob, J.T. Lin, "Solid-state dye-sensitized solar cells based on spirofluorene
(spiro-OMeTAD) and arylamines as hole transporting materials", Phys. Chem. Chem. Phys., vol. 14, p. 14099, 2012.
[55] S.M. Feldt, G. Wang, G. Boschloo, A. Hagfeldt, "Effects of driving forces for recombination and regeneration on the photovoltaic performance of dye-sensitized solar cells using cobalt polypyridine redox couples", J. Phys. Chem. C, vol. 115, p. 21500, 2011.
[56] C.H. Yoon, R. Vittal, J. Lee, W.-S. Chae, K.-J. Kim, "Enhanced performance of a dye-sensitized solar cell with an electrodeposited-platinum counter electrode", Electrochim. Acta, vol. 53, p. 2890, 2008.
[57] L.-L. Li, C.-W. Chang, H.-H. Wu, J.-W. Shiu, P.-T. Wu, E.W.-G. Diau, "Morphological control of platinum nanostructures for highly efficient dye-sensitized solar cells", J. Mater. Chem., vol. 22, p. 6276, 2012.
[58] Y.-L. Lee, C.-L. Chen, L.-W. Chong, C.-H. Chen, Y.-F. Liu, C.-F. Chi, "A platinum counter electrode with high electrochemical activity and high transparency for dye-sensitized solar cells", Electrochem. Commun., vol. 12, p. 1662, 2010.
[59] N. Papageorgiou, W.F. Maier, M. Grätzel, "An iodine/triiodide reduction electrocatalyst for aqueous and organic media", J. Electrochem. Soc., vol. 144, p. 876, 1997.
[60] K.T. K. Imoto, T. Yamaguchi, T. Komura, J.-I. Nakamura, K. Murata, "High-performance carbon counter electrode for dye-sensitized solar cells", Sol. Energy Mater. Sol. Cells, vol. 79, p. 459, 2003.
[61] P. Joshi, Y. Xie, M. Ropp, D. Galipeau, S. Bailey, Q. Qiao, "Dye-sensitized solar cells based on low cost nanoscale carbon/TiO2 composite counter electrode", Energy Environ. Sci., vol. 2, p. 426, 2009.
[62] W.J. Lee, E. Ramasamy, D.Y. Lee, J.S. Song, "Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes", ACS Appl. Mater. Interfaces, vol. 1, p. 1145, 2009.
[63] H.-S. Jang, J.-M. Yun, D.-Y. Kim, D.-W. Park, S.-I. Na, S.-S. Kim, "Moderately reduced graphene oxide as transparent counter electrodes for dye-sensitized solar cells", Electrochim. Acta, vol. 81, p. 301, 2012.
[64] M. Wang, A.M. Anghel, B. Marsan, N.-L.C. Ha, N. Pootrakulchote, S.M. Zakeeruddin, M. Grätzel, "CoS supersedes Pt as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells", J. Am. Chem. Soc., vol. 131, p. 15976, 2009.
[65] X.L. M. Wu, Y. Wang, L. Wang, W. Guo, D. Qi, X. Peng, A. Hagfeldt, M. Grätzel, T. Ma, "Economical Pt-free catalysts for counter electrodes of dye-sensitized solar cells", J. Am. Chem. Soc., vol. 134, p. 3419, 2012.
[66] J.M. Pringle, V. Armel, D.R. MacFarlane, "Electrodeposited PEDOT-on-plastic cathodes for dye-sensitized solar cells", Chem. Commun., vol. 46, p. 5367, 2010.
[67] Q. Tai, B. Chen, F. Guo, S. Xu, H. Hu, B. Sebo, X.-Z. Zhao, "In situ prepared transparent polyaniline electrode and its application in bifacial dye-sensitized solar cells", ACS Nano, vol. 5, p. 3795, 2011.
[68] P. Li, J. Wu, J. Lin, M. Huang, Y. Huang, Q. Li, "High-performance and low platinum loading Pt/Carbon black counter electrode for dye-sensitized solar cells", Sol. Energy, vol. 83, p. 845, 2009.
[69] K.-C. Huang, Y.-C. Wang, R.-X. Dong, W.-C. Tsai, K.-W. Tsai, C.-C. Wang, Y.-H. Chen, R. Vittal, J.-J. Lin, K.-C. Ho, "A high performance dye-sensitized solar cell with a novel nanocomposite film of PtNP/MWCNT on the counter electrode", J. Mater. Chem., vol. 20, p. 4067, 2010.
[70] M.-Y. Yen, C.-C. Teng, M.-C. Hsiao, P.-I. Liu, W.-P. Chuang, C.-C.M. Ma, C.-K. Hsieh, M.-C. Tsai, C.-H. Tsai, "Platinum nanoparticles/graphene composite catalyst as a novel composite counter electrode for high performance dye-sensitized solar cells", J. Mater. Chem., vol. 21, p. 12880, 2011.
[71] G.R. Li, F. Wang, J. Song, F.Y. Xiong, X.P. Gao, "TiN-conductive carbon black composite as counter electrode for dye-sensitized solar cells", Electrochim. Acta, vol. 65, p. 216, 2012.
[72] F. Ghamouss, R. Pitson, F. Odobel, M. Boujtita, S. Caramori, C.A. Bignozzi, "Characterization of screen printed carbon counter electrodes for Co(II)/(III) mediated photoelectrochemical cells", Electrochim. Acta, vol. 55, p. 6517, 2010.
[73] L. Wang, E.W.-G. Diau, M. Wu, H.-P. Lu, T. Ma, "Highly efficient catalysts for Co(ii/iii) redox couples in dye-sensitized solar cells", Chem. Commun., vol. 48, p. 2600, 2012.
[74] M. Stefik, J.-H. Yum, Y. Hu, M. Gratzel, "Carbon-graphene nanocomposite cathodes for improved Co(ii/iii) mediated dye-sensitized solar cells", J. Mater. Chem. A, vol. 1, p. 4982, 2013.
[75] S.M. Feldt, E.A. Gibson, G. Wang, G. Fabregat, G. Boschloo, A. Hagfeldt, "Carbon counter electrodes efficient catalysts for the reduction of Co(III) in cobalt mediated dye-sensitized solar cells", Polyhedron, vol. 82, p. 154, 2014.
[76] L. Kavan, J.-H. Yum, M.K. Nazeeruddin, M. Grätzel, "Graphene nanoplatelet cathode for Co(III)/(II) mediated dye-sensitized solar cells", ACS Nano, vol. 5, p. 9171, 2011.
[77] L. Kavan, J.-H. Yum, M. Graetzel, "Optically transparent cathode for Co(III/II) mediated dye-sensitized solar cells based on graphene oxide", ACS Appl. Mater. Interfaces, vol. 4, p. 6999, 2012.
[78] M. Wu, T. Ma, "Recent progress of counter electrode catalysts in dye-sensitized solar cells", J. Phys. Chem. C, vol. 118, p. 16727, 2014.
[79] S.K. Swami, N. Chaturvedi, A. Kumar, R. Kapoor, V. Dutta, J. Frey, T. Moehl, M. Grätzel, S. Mathew, M.K. Nazeeruddin, "Investigation of electrodeposited cobalt sulphide counter electrodes and their application in next-generation dye sensitized solar cells featuring organic dyes and cobalt-based redox electrolytes", J. Power Sources, vol. 275, p. 80, 2015.
[80] S. Ahmad, T. Bessho, F. Kessler, E. Baranoff, J. Frey, C. Yi, M. Grätzel, M.K. Nazeeruddin, "A new generation of platinum and iodine free efficient dye-sensitized solar cells", Phys. Chem. Chem. Phys., vol. 14, p. 10631, 2012.
[81] J. He, J.M. Pringle, Y.-B. Cheng, "Titanium carbide and titanium nitride-based nanocomposites as efficient catalysts for the Co2+/Co3+ redox couple in dye-sensitized solar cells", J. Phys. Chem. C, vol. 118, p. 16818, 2014.
[82] S. Shukla, N.H. Loc, P.P. Boix, T.M. Koh, R.R. Prabhakar, H.K. Mulmudi, J. Zhang, S. Chen, C.F. Ng, C.H.A. Huan, N. Mathews, T. ritharan, Q. Xiong, "Iron pyrite thin film counter electrodes for dye-sensitized solar cells: high efficiency for iodine and cobalt redox electrolyte cells", ACS Nano, vol. 8, p. 10597, 2014.
[83] A. Yella, H.-W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.-G. Diau, C.-Y. Yeh, S.M. Zakeeruddin, M. Grätzel, "Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency", Science, vol. 334, p. 629, 2011.
[84] AZO MATERIALS, http://www.azom.com/article.aspx?ArticleID=10817
[85] P. EDUCATION.ORG, http://www.pveducation.org/pvcdrom/appendices/standard-solar-spectra
[86] Y. Liu, J.R. Jennings, Y. Huang, Q. Wang, S.M. Zakeeruddin, M. Grätzel, "Cobalt Redox Mediators for Ruthenium-Based Dye-Sensitized Solar Cells: A Combined Impedance Spectroscopy and Near-IR Transmittance Study", J. Phys. Chem. C, vol. 115, p. 18847, 2011.
[87] B.-w. Park, M. Pazoki, K. Aitola, S. Jeong, E.M.J. Johansson, A. Hagfeldt, G. Boschloo, "Understanding interfacial charge transfer between metallic PEDOT counter electrodes and a cobalt redox shuttle in dye-sensitized solar cells", ACS Appl. Mater. Interfaces, vol. 6, p. 2074, 2014.
[88] N. Robertson, "Optimizing dyes for dye-sensitized solar cells", Minireviews, vol. 45, p. 2338, 2006.
[89] T.N. Murakami, S. Ito, Q. Wang, M.K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R.H.-. Baker, P. Comte, P. Péchy, M. Grätzel, "Highly efficient dye-sensitized solar cells based on carbon black counter electrodes", J. Electrochem. Soc., vol. 153, p. A2255, 2006.
[90] T. Nyokong, V. Ahsen, "Photosensitizers in Medicine, Environment, and Security", vol. p. 565, 2012.
[91] dyenamo, http://www.dyenamo.se/dyenamo_dyes.php