簡易檢索 / 詳目顯示

研究生: 謝添進
Hsieh, Tien-Chin
論文名稱: 台北、高屏地區土壤污染涵容能力推估
指導教授: 林財富
Lin, Tsair-Fuh
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 137
中文關鍵詞: 健康風險評估土壤生態風險評估
外文關鍵詞: SESOIL, Health Risk Assessment, Soil, Ecological Risk Assessment
相關次數: 點閱:102下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣地區土壤污染日益嚴重,因此如何評估污染場址對人體健康與環境之影響程度也日受重視。本研究之目的以風險角度考慮土壤涵容能力,著重於人體健康與生態環境之保護,進行台北、高屏地區土壤之涵容能力推估。
    研究首先收集台灣地區土壤特性資料、污染調查報告及尋找污染物特性資料庫,再配合污染物在土壤中之傳輸與宿命模式(SESOIL),並結合健康風險評估及生態風險評估來推估污染物對暴露受體所造成之影響,最後以反推方式即可進行土壤涵容能力之推估。
    模擬結果顯示,在一般地下水位深度情況下(約為3公尺),土壤所能承受之最大污染量,苯為4.3 mg/kg、三氯乙烯為36 mg/kg、甲苯則為17 mg/kg,而結果也顯示地下水位越深,則可承受之污染量越大,因此以地下水污染潛勢為考慮之土壤污染涵容能力應將地下水水位納入考慮。
    研究中發現污染物對人體健康風險中之暴露途徑,揮發性有機物(苯、甲苯、三氯乙烯)以呼吸為主;半揮發性有機物(鄰苯二甲酸正二辛酯)以農作物攝入、皮膚接觸為主;重金屬(砷、鉻、汞)則以農作物攝入、誤食土壤為最主要之途徑。
    台北、高屏地區六種代表性土系及其氣候條件下對污染物暴露量影響差異性主要係由土壤有機質及降雨量所造成,一般而言,土壤有機質含量越大,有機物移動越慢,降雨越大則污染物移動越深。對風險度增加而言,前者會使有機物風險性增加,後者則會使地下水污染潛勢增大。
    而針對台北、高屏六土系對七種不同污染物所推估而得之最大可承受濃度。苯之最大可承受濃度介於0.05~0.12mg/Kg;三氯乙烯之最大可承受濃度介於10.1~34.8mg/Kg;甲苯之最大可承受濃度介於300~400mg/Kg;鄰苯二甲酸正二辛酯之最大可承受濃度介於100~120mg/Kg;砷之最大可承受濃度介於0.63~0.74mg/Kg;鉻之最大可承受濃度介於25~29mg/Kg;汞之最大可承受濃度介於0.39~0.48mg/Kg。
    生態風險評估方面,針對六種代表性動物對重金屬鉻及砷,在六種台北、高屏地區代表土壤中所得到的結果顯示,個體小的代表性生物,其能承受之劑量越小,因此土壤污染承受能力越低,且往往低於以人體健康風險考量情況下所得之數值。而Dove(鴿子)容許濃度為28~39 (鉻)、0.35~0.50 (砷) mg/Kg;Woodcock(山鷸)容許濃度為11~35 (鉻)、0.14~0.44 (砷) mg/Kg;Hawk(鷹)容許濃度為70~100 (鉻)、0.88~1.26 (砷) mg/Kg;Vole(田鼠)容許濃度為350~860 (鉻)、4.67~11.5 (砷) mg/Kg;Shrew(地鼠)容許濃度為170~670 (鉻)、2.27~8.93 (砷) mg/Kg;Weasel(黃鼠狼)之容許濃度為1800~4300 (鉻)、24~57 (砷)mg/Kg。

    Abstract
    Soil pollution has become a serious problem in Taiwan. To understand the effect of the pollution on the human health and environmental quality, the carrying capacity of soil must be determined. Therefore, the objectives of this study are to develop a scheme to estimate the carrying capacity of pollutants for soil, and then to apply the scheme to determine the carrying capacity for Kaohsiung and PingTong Area (Kao-Ping Area) and Taipei Area.
    Information about soil properties, weather conditions, and characteristics of contaminants were first collected. Considering the parameters collected, numerical models are used to simulate the transport and fate of different target contaminants in the contaminated soil systems. Exposure models are then employed to estimate human and animal exposure to the target compounds from different pathways, including air, ground water, surface water, and soil. The target compounds include three organic pollutants, benzene, trichloroethylene, toluene and di-n-octyl phthalate (DOP), and two heavy metals, including arsenic and chromium. Based on the exposure estimation, human health and ecological risks were interpreted at different soil contamination levels. The carrying capacity of soil for different contaminants was determined according to acceptable health and ecological risks.
    After comparison for many transport models’ mechanisms, the SESOIL model was selected as the unsaturated zone model. In SESOIL, hydrogeological simulation, soil deposition movement, and contaminant transport are accounted for. Five categories of input parameters, including meteorological data, soil properties, chemical characteristics, application data, and washload, are needed in the model.
    The exposure pathways considered in this study include ingestion of soil, drinking water, and vegetables, and inhalation of air and airborne dust, and dermal contact of the contaminated soil. The model for each pathway was based on that developed by USEPA, while the input parameters were either collected from local reports if possible or from the suggested values from USEPA.
    The results of simulation show that the carrying capacity for the representative Kao-Ping area soil and weather condition, are 4.3 mg/kg for benzene, 36 mg/kg for TCE and 17 mg/kg for toluene under normal groundwater depth (about 3 m). The deeper the groundwater level, the higher carrying capacity the soil may have.
    The major exposure pathways for the volatile compounds, including benzene, toluene, and trichloroethylene (TCE), are inhalation, while that for the semi-volatile organic compound, di-n-octyl phthalate (DOP), are ingestion of food and dermal contact. For heavy metals, arsenic, chromium, and mercury, the major pathway is ingestion of both food and soil.
    For the six representative soils in the two climate systems of Kao-Ping and Taipei areas, the chemical exposure and associated risk to human are differentiated by the organic content, in the soil and the annual precipitation in the area. Generally, more organic content in the soil may slow down the movement of organic pollutants, while more annual precipitation may cause faster migration of the pollutants.
    Based on the estimation of seven pollutants in the six soil systems, the carrying capacity is between 0.05and 0.12 mg/kg for benzene, between 10.1 and 34.8 mg/kg for TCE, between 300 and 400 mg/kg for toluene, between 100 and 120 mg/kg for DOP, between 0.63 and 0.74 mg/kg for arsenic, between 25 and 29 mg/kg for chromium and between 0.39 and 0.48 mg/kg for mercury.
    For ecological risk assessment, only two heavy metals, chromium and arsenic are evaluated for six representative animals suggested by USEPA, including dove, woodcock, hawk, vole, shrew and weasel. The results show that the animal with smaller body weight has lower carrying capacity, and those carrying capacity are sometimes smaller than that based on the health risk assessment.
    The estimated carrying capacity of arsenic based on ecological risk assessment for Taipei and Kao-Ping area are 0.35 to 0.50, 0.14 to 0.44, 0.88 to 1.26, 4.67 to 11.5, 2.27 to 8.93 mg/kg, and 24 to 57 for dove, woodcock, hawk, vole, shrew and weasel, respectively. That of chromium are 28 to 39, 11 to 35, 70 to 100, 350 to 860, 170 to 670 and 1800 to 4300 mg/kg for dove, woodcock, hawk, vole, shrew and weasel, respectively.

    中文摘要 I 英文摘要 III 誌謝 V 目錄 VI 表目錄 IV 圖目錄 VI 第一章 序論 1 1-1研究動機與緣起 1 1-2研究目的 1 1-3研究架構…………. 2 第二章 文獻回顧 4 2-1國內土壤污染現況 4 2-1-1台北、高屏地區土壤品質現況分析 7 2-2國內土壤污染管制標準制定方法 15 2-2-1有機物質標準 15 2-2-2重金屬監測基準及管制標準 18 2-3污染物在土壤中之遷移與宿命 22 2-3-1重金屬 22 2-3-2有機物 22 2-4風險評估 26 2-4-1風險評估的步驟 26 2-4-2健康風險評估 28 2-4-3生態風險評估 32 2-5變異性及不確定性 34 2-6涵容能力推估與應用 37 第三章 研究方法 39 3-1土壤涵容能力推估模式架構 39 3-2污染物特性與代表性土壤資料 42 3-3傳輸模式篩選與驗證 46 3-3-1模式篩選 46 3-3-2 SESOIL模式介紹 49 3-3-3模式之驗證 57 3-4健康風險評估 61 3-4-1暴露途徑 64 3-3-2暴露參數 73 3-5生態風險評估 76 3-5-1生態風險評估流程 76 3-5-2風險評估模式參數 78 3-5-3生態風險推估值 80 第四章 結果與討論 82 4-1傳輸模式之敏感度分析與驗證結果 82 4-1-1土壤與化合物特性分析結果 82 4-1-2代表性地區土壤及氣候參數對模式之影響 86 4-1-3模式驗證 88 4-2健康風險評估 90 4-2-1有機污染物模擬結果 90 4-2-5重金屬模擬結果 102 4-3生態風險評估 113 4-3-1鉻之評估結果 113 4-3-2砷之評估結果 115 4-4台北及高屏土壤涵容能力推估結果 117 4-4-1以地下水污染潛勢考量之涵容能力 117 4-4-2以健康風險考量之涵容能力 117 4-4-3以生態風險考量之涵容能力 120 第五章 結論與建議 122 參考文獻 125 附錄 131 自述 137

    American Petroleum Institute(API)(1996), “A Guide to the Assessment of Remediation of Underground Petroleum Release”, Publication 1628, Third Edition, Washington, D. C.

    Alloway, B. J.(1990), “The origins of heavy metals in soil”, in Heavy Metals in Soils, Blackie, USA and Canada : Halsted Press.

    American Society for Testing and Materials(ASTM)(1995), “Standard Guide for Risk-based Corrective Action Applied at Petroleum-Release Sites”, ASTM, West Conshohocken, PA(E1739-95).

    American Society for Testing and Materials(ASTM)(1998), Standard Provisional Guide for Risk-based Corrective Action, ASTM, West Conshohocken, PA(PS 104-98).

    American Petroleum Institute(API)(1999), Exposure and Risk Assessment Decision Support System, Software, Version2.0.

    Anderson, T. A., J. J. Beauchamp, and B. T. Walton(1991), “Fate of Volatile and Semivolatile Organic Chemicals in Soil: Aiotic Versus Biotic Losses”, J. Environ. Qual., 20: 420-424.

    Bohn, H. L. & O’connor, G. A.( 1985), “Soil Chemistry”, John Wiley & Sons. New York Chichester Brisbane Toronto, Singapore.

    Bonazountas, M. and Wanger, J. (1984), SESOIL: A Seasomal Compartment Model, Arthur D. Little, Inc., Cambridge, MA, prepared for U.S. EPA, Office of Toxic Substances.

    Chiou, C.T., Sheng, G., and Manes, M. (2001), A partition-limited model for
    the plant uptake of organic contaminants from soil and water: Environmental Science and Technology, v. 35, p. 1437-1444.

    Finley, B., Lau, V. and Paustenbach, D.(1992), "Using an uncertainty analysis of direct and indirect exposure to contaminated groundwater to evaluate EPA's MCLs and health-based cleanup goals", Journal of Hazardous Materials, 32: 263-274.

    General Sciences Corporation "SESOIL, (1998) Reference Guide and User's Guide ",RISKPRO®, SESOIL for Windows, Version 3.0, May.

    Hetrick, D.M., and Scott, S.J. (1998) "Fate and Exposure Models : Selecting The Appropriate Model for a Specific Application. SESOIL and AT123D Models", Journal of Soil Contamination, 7(3):301-309.

    Hetrick, D.M., and Pandey, A. (1999) "A Methodology for Establishing Cleanup Objectives in the Unsaturated Soil Zone Using Sensitivity and Uncertainty Analysis for Chemical Fate and Transport", Journal of Soil Contamination, 8(5):559-576 .

    Iman, L. R. and Helton, J.C.,(1988)"An investigation of uncertainty and sensitivity analysis techniques for computer models", Risk Anal., 8: 71-90.

    LaGrega, M. D., P. L. Buckingham, and Jeffrey C. E., (2001)“Hazardous Waste Management, 2nd-”, New York, McGraw-Hill Higher Education.

    Liptak, J.F. and Lombardo, G. (1996) "The Development of Chemical-Specific, Risk-Based Soil Cleanup Guidelines Results in Timely and Cost-Effective Remediation", Journal of Soil Contamination, 5(1):83-94.

    Maxwell, R. M., Pelmulder, S. D., Tompson, A. F. B., and Kastenberg, W. E., (1998) "On the development of a new methodology for groundwater-driven health risk assessment", Water Resources Reasearch, 34(4): 833-847.

    McKone, T. E. and Ryan, P. B., (1989)"Human Exposure to Chemicals through Food Chains: An Uncertainty analysis", Environ. Sci. Technol., 23: 1154-1163.

    Parker, G. R., W. W. McFee and Kelly J. M., (1978)“Metal distribution in forested ecosystems in ruban and reral north-Western”, Indiana. J. Environ. Qual., 7: 337-342.

    Paul, J. L., (1990)"Assessing total human exposure to contaminants", Environ. Sci. Technol., 24(7): 938-945.

    Sidle, R. C. and Kardos, L. T., (1977) “Adsorption of Copper, Zinc, and Cadium by forest soil”, J. Environ. Qual., 6: 314-317.

    USEPA, (1996) Soil Screening Guidance: Technical Background Document, United States Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, D. C., EPA/540/R-95/128, NTIS PB96-963502, May.

    USEPA, (1998) Sustainability and Resource Assessment: A Case Study of Soil Resources in the United States, Office of Research and Development, Washington, D. C., EPA/600/R-98/038, June.
    中鼎工程公司, "建立地下水水質監測與污染管制資訊系統先期計畫(期中報告)", 行政院環保署
    王銀波, “土壤品質標準-土壤重金屬鉛鋅含量分級基準之建立”, 行政院環保署, 民國81年
    行政院環保署, “台灣地區土壤重金屬含量調查總報告(一)~(四)冊”, 民國79年
    行政院環保署, "事業廢棄物管制現況及未來展望", 1999
    行政院環保署, "環境白皮書", 2000
    行政院內政部統計月報, 1999
    阮國棟、簡慧貞, “健康風險暴露評估準則之建立”, 工業污染防制季刊, 第50期, pp.1~18, 民國83年4月
    吳先琪, 王西華, 曾四恭, 駱尚廉, 林正芳"台灣地區土壤自淨能力及污染評估方法之研究(第二年)", 行政院環保署, EPA-82-E3H1-09-01-(3)
    吳先琪, 王西華, 曾四恭, 駱尚廉, 林正芳"台灣地區土壤自淨能力及污染評估方法之研究(第三年)",行政院環保署, EPA-83-E3H1-09-01-(2)
    周聖炫, “以風險評估反推土壤中銅、鎘、鉛、鋅之涵容能力-方法建立與案例研究”, 碩士論文, 中興大學環境工程研究所, 1997
    屏東縣環保局, "環境白皮書", 1999
    陳式千, "台灣地區土地利用之土壤污染等級區分研究",行政院環保署, EPA-81-E3H1-09-16
    陳尊賢, “土壤污染評估方法之發展”, 行政院環保署, 民國86年
    陳尊賢, "土壤污染防治法施行細則與土壤污染等級評估制度-台灣地區土壤污染物管制標準之研擬", 行政院環保署, EPA-88-H105-03-004
    國立屏東科技大學環境工程與科學系暨研究所, "屏東縣違法廢棄物回填場址附近現有水井水質初步調查(期末報告)", 屏東縣環保局
    張仲民著, 普通土壤學, 臺北茂昌圖書公司, 1992
    張祖恩、高銘木、林財富, “中鋼公司直接水礦泥田間利用可行性研究”, 財團法人成大研究發展基金會, 民國89年
    曾四恭(1997), “土壤中有機污染物處理技術研究”, 行政院環保署, EPA-86-H104-09-06
    曾四恭, 吳先琪, 高銘木"土壤污染物處理技術研究", 行政院環保署, EPA-87-E3H1-03-05.
    湯忠達, “地下水污染之暴露與健康風險評估-以桃園RCA場址為例”, 碩士論文, 台灣大學環境工程研究所, 2000
    郭振泰, "NTA對地下水可能造成污染之模擬分析", 中國農業工程學報第三十一卷第三期
    葉俊榮等,『因應重大環境議題相關立法之研究-第二部分:土壤污染防治法施行細則與土壤污染等級評估制度』, 行政院環保署, 民國88
    瑞昶科技公司, "地下水潛在污染源調查計畫", 行政院環保署, 2002
    衛適密廢物減量公司, "土壤有機污染物管制之研析計畫-土壤污染監測基準及管制標準研擬", 行政院環保署, EPA-89-H104-03-1187
    網站
    U.S.EPA http://www.epa.gov/
    U.S.EPA, Integrated Risk Information System(IRIS)
    http://www.epa.gov/iris/
    U.S. Office of Underground Storage Tanks (OUST) http://www.epa.gov/swerust1/subindex.htm
    NUTRIENT DATA LABORATORY(USDA)http://www.nal.usda.gov/fnic/foodcomp/
    行政院環保署 http://www.epa.gov.tw/
    行政院環保署環檢所 http://www.niea.gov.tw/niea2002/index_Frame.htm
    中國石油公司 http://www.cpc.com.tw/index_6.asp

    下載圖示 校內:立即公開
    校外:2002-08-09公開
    QR CODE