| 研究生: |
林權萱 Lin, Chuan-Hsuan |
|---|---|
| 論文名稱: |
機器學習導入永續建築設計流程-以參數立面日光設計和性能最佳化為例 Machine Learning and Sustainable Architectural Design-A demonstration of parametric facade design and performance optimization |
| 指導教授: |
蔡耀賢
Tsay, Yaw-Shyan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2021 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 144 |
| 中文關鍵詞: | 預測模型 、方法開發 、設計決策支持 、參數化設計 、建築性能模擬 |
| 外文關鍵詞: | Predictive Model, Methodology Development, Design Decision Support, Parametric Design, Building Performance Simulation |
| 相關次數: | 點閱:133 下載:29 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
建築中的日光對於室內人員的舒適性、健康,以及建築物能源消耗有重要的影響,因此早期階段的日光設計決策對於建築的整體永續性發展至關重要。然而,在建築早期設計階段中實現日光評估仍面臨著許多挑戰。例如,過去經常採用的日光模擬評估方法計算量龐大並且十分耗時。為了在設計早期階段快速獲取有關建築日光性能的資訊以輔助決策,最近的研究開始使用機器學習、建築最佳化演算等方法來改善日光評估流程。透過機器學習可以開發日光預測模型快速進行評估,然而目前的模型訓練方法極大地限制了日光模型的應用範圍。建築最佳化演算可以在眾多設計備選方案中快速探索最佳解決方案,而其過程仍需大量計算且時間成本高昂。
為了提高建築實務進行日光評估的可行性,本研究以辦公建築立面設計為研究對象。首先,本研究以不同的機器學習方法開發了一種創新的日光預測模型,這些模型透過中介特徵進行訓練,使模型可以不受設計參數的限制而擴展模型的應用範圍。接著,將預測模型整合至最佳化流程中,進行了包含採光性能、能源消耗和使用者熱舒適的多目的最佳化評估,並演示了決策流程。整體而言,整合了參數化平台、機器學習和最佳化演算法等技術,探討快速進行評估、設計最佳化和簡化預測流程的可能性。
在開發日光預測模型方面,結果顯示分析表面上的DA和ASE小時值都得到了良好的預測,成功再現了不同立面的日光分佈情形,表明了採用中介特徵的模型轉譯訓練方法對於擴展應用範圍的有效性。不同的學習方法中,以RF和GBDT所訓練之模型有最佳的預測表現。此外,使用日光預測模型可以節省約90%的評估時間。在最佳化評估方面,結果顯示,Pareto解決方案包含了三個性能指標權衡後的結果,設計人員可以在可視化決策流程中輕易的比較最佳方案的性能和設計樣式。而整合預測模型的最佳化流程能夠在一日內完成評估,展現了可觀的時間優勢和可行性。為了實現更好的軟體相容性,本研究也開發並簡化了流程,設計人員只須導入設計模型並定義少量參數即能進行日光預測,使設計和評估之流程及工具相容性大為提升。整體而言,雖然預測模型至今仍存在一些限制,目前的研究成果對於透過機器學習模型快速預測、擴展模型應用範圍的方法、快速最佳化評估和設計決策方法,已經取得了重大進展。
In order to obtain information about building daylighting performance earlier in the design stage, recent studies have begun to develop daylight prediction models using machine learning methods. Most studies have adopted design variation parameters as the input parameters for model training, but this method greatly limits the scope of application of the daylight model.
By extending application to different design possibilities, this research proposes a novel daylight model, which includes a pre-processing procedure to convert the design model into “Intermediary features” as input parameters representing daylight penetration performance. By changing geometry of one kind of parametric façade and performing daylighting simulation, we were able to generate the data for training, including Intermediary features and sDA/ASE values. The daylight model was then trained using an artificial neural network. Finally, the proposed daylight model was tested by predicting the daylight performance of other kinds of façades.
The results indicated that the value of DA and ASE hours per grid were well predicted and that the daylight distribution was reproduced even with different kinds of façades. The deviations of sDA and ASE from simulation results ranged from 1.7 to 6.1% and 0.3 to 2.1 hours respectively. The reproducibility, the predictive capability, and most importantly the extension of model applicability were all demonstrated for the proposed model. Furthermore, comparing to the daylighting simulation, the method using the proposed daylight model is estimated to save 9/10 daylighting evaluation time. This is critical for implementing the evaluation in the early design stage.
(一) 中文文獻
1. 林權萱,2018。以建築師事務所觀點探究建築性能模擬軟體在設計實務中之採用因素。國立成功大學建築研究所碩士論文,台南市。
2. 黃士嘉、林邑撰,2019。輕鬆學會Google TensorFlow 2.0:人工智慧深度學習實作開發。博碩文化股份有限公司,新北市。
(二) 英文文獻
1. Abraham, A., Jain, L.C. & Goldberg, R. (2005). Evolutionary Multiobjective Optimization: Theoretical Advances and Applications. Springer.
2. Afzal, A., Aabid, A., Khan, A., Khan, S.A., Rajak, U., et al. (2020). Response surface analysis, clustering, and random forest regression of pressure in suddenly expanded high-speed aerodynamic flows. Aerospace Science and Technology, 107, 106318.
3. Aiserman, M.A., Braverman, E.M. & Rozonoer L.I. (1964). Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control, 25, 821-837.
4. Alpaydin, E. (2010). Introduction to Machine Learning (2nd Edition). The MIT Press, London, England.
5. Amasyali, K. & El-Gohary, N.M. (2018). A review of data-driven building energy consumption prediction studies. Renewable and Sustainable Energy Reviews, 81, 1192-1205.
6. Araji, M.T. (2008). Balancing human visual comfort and psychological wellbeing in private offices. Doctoral dissertation, University of Illinois at Urbana-Champaign. http://hdl.handle.net/2142/87360
7. ASHRAE. (2020). ANSI/ASHRAE Addendum d to ANSI/ASHRAE Standard 55-2017: Thermal Environmental Conditions for Human Occupancy.
8. Attia, S., Hamdy, M., O’Brien, W. & Carlucci, S. (2013). Assessing gaps and needs for integrating building performance optimization tools in net zero energy buildings design. Energy and Buildings, 60, 110-124.
9. Ayoub, M. (2019). 100 years of daylighting: a chronological review of daylight prediction and calculation methods. Solar Energy, 194, 360-390.
10. Ayoub, M. (2020). A review on machine learning algorithms to predict daylighting inside buildings. Solar Energy, 202, 249-275.
11. Bhavani, R. & Khan, M. (2011). Advanced Lighting Simulation Tools for Daylighting Purpose: Powerful Features and Related Issues. Trends in Applied Sciences Research, 6(4), 345-363.
12. Bielik, M., Fuchkina, E., Schneider, S. & Koenig, R. (2019). DeCodingSpaces Toolbox, Tutorial | 2D and 3D isovists for visibility analysis, available at: https://toolbox.decodingspaces.net/tutorial-2d-and-3d-isovists-for-visibility-analysis/ (Accessed 18 October 2021).
13. Boser, B.E., Guyon, I.M. & Vapnik, V.N. (1992). A training algorithm for optimal margin classifiers. Proceedings of the Fifth Annual Workshop on Computational Learning Theory, 144-152.
14. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.
15. Broomhead, D.S. & Lowe, D. (1988). Radial basis functions, multi-variable functional interpolation and adaptive networks. Royals Signals & Radar Establishment.
16. Carlucci, S., Cattarin, G., Causone, F. & Pagliano, L. (2015). Multi-objective optimization of a nearly zero-energy building based on thermal and visual discomfort minimization using a non-dominated sorting genetic algorithm (NSGA-II). Energy and Buildings, 104, 378–394.
17. Chen, X., Zhang, X. & Du, J. (2019). Exploring the effects of daylight and glazing types on self-reported satisfactions and performances: A pilot investigation in an office. Architectural Science Review, 62, 338–353.
18. Ciregan, D., Meier, U., Masci, J. & Schmidhuber, J. (2012). Multi-column deep neural networks for image classification. Neural Networks, 32, 333-338.
19. Cortes, C. & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.
20. D'Amico, A., Ciulla, G., Traverso, M., Lo Brano, V. & Palumbo, E. (2019). Artificial Neural Networks to assess energy and environmental performance of buildings: An Italian case study. Journal of Cleaner Production, 239, 117993.
21. D'Amico, B., Myers, R.J., Sykes, J., Voss, E., Cousins-Jenvey, B., et al. (2019). Machine learning for sustainable structures: a call for data. Structures, 19, 1-4.
22. Dahlan, A.S. & Eissa, M.A. (2015). The impact of daylighting in classrooms on students' performance. International Journal of Soft Computing and Engineering, 4(6), 7-9.
23. Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197.
24. Delgarm, N., Sajadi, B. & Delgarm, S. (2016). Multi-objective optimization of building energy performance and indoor thermal comfort: A new method using artificial bee colony (ABC). Energy and Buildings, 131, 42–53.
25. Eisenhower, B., O’Neill, Z., Narayanan, S., Fonoberov, V.A. & Mezić, I. (2012). A methodology for meta-model based optimization in building energy models. Energy and Buildings, 47, 292-301.
26. Elman, J.L. (1990). Finding structure in time. Cognitive Science, 14(2), 179-211.
27. Erlendsson, Ö. (2014). Daylight Optimization: A Parametric Study of Atrium Design. Master Thesis, School of Architecture and the Built Environment, KTH Royal Institute of Technology. https://www.diva-portal.org/smash/get/diva2:723644/FULLTEXT01.pdf
28. Evins, R. (2013). A review of computational optimisation methods applied to sustainable building design. Renewable and sustainable energy reviews, 22, 230-245.
29. Futrell, B.J., Ozelkan, E.C. & Brentrup, D. (2015). Bi-objective optimization of building enclosure design for thermal and lighting performance. Building and Environment, 92, 591-602.
30. Gadelhak, M.I.A. (2019). A computational framework for the optimization of the environmental performance of facades in early design stages. Doctoral dissertation, Technical University of Munich. https://mediatum.ub.tum.de/doc/1481164/1481164.pdf
31. Grasshope. (2016, February 10). [discussion] Sky View Factor. Message posted to https://www.grasshopper3d.com/group/ladybug/forum/topics/discussion-sky-view-factor
32. Green Quarter. Daylight Metrics. Available at: https://www.greenquarter.biz/green-engineering/daylight-metrics/ (Accessed 18 October 2021).
33. Han, Y.. Shen, L. & Sun, C. (2021). Developing a parametric morphable annual daylight prediction model with improved generalization capability for the early stages of office building design. Building and Environment, 200, 107932.
34. Hensen, J.L. & Lamberts, R. (Eds) (2019). Building performance simulation for design and operation (2nd Edition). Routledge.
35. Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A. R., et al. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal processing magazine, 29(6), 82-97.
36. Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor.
37. Hu, J. & Olbina, S. (2011). Illuminance-based slat angle selection model for automated control of split blinds. Building and Environment, 46(3), 786-796.
38. Huang, Y. & Niu, J.L. (2016). Optimal building envelope design based on simulated performance: history, current status and new potentials. Energy and Buildings, 117, 387-398.
39. IESNA. (2012). IES LM-83-12: IES spatial daylight autonomy (sDA) and annual sunlight exposure (ASE). New York, New York: Illuminating Engineering Society of North America.
40. Ivakhnenko, A.G. (1971). Polynomial theory of complex systems. IEEE Transactions on Systems, Man, and Cybernetics, SMC-1(4), 364-378.
41. Jakubiec, J.A. & Reinhart, C.F. (2011 November). DIVA 2.0: integrating daylight and thermal simulations using Rhinoceros 3D, DAYSIM and EnergyPlus. In Proceedings of Building Simulation 2011:12th Conference of International Building Performance Simulation Association, Sydney. http://ibpsa.org/proceedings/BS2011/P_1701.pdf
42. Jang, J.S. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665-685.
43. Kalogirou, S.A. (2001). Artificial neural networks in renewable energy systems applications: a review. Renewable and Sustainable Energy Reviews, 5(4), 373-401.
44. Kämpf, J.H. & Robinson, D. (2010). Optimisation of building form for solar energy utilisation using constrained evolutionary algorithms. Energy and Buildings, 42, 807–814.
45. Kazanasmaz, T., Günaydin, M. & Binol, S. (2009). Artificial neural networks to predict daylight illuminance in office buildings. Building and Environment, 44(8), 1751-1757.
46. Kim, J. (2013). Adaptive façade design for the daylighting performance in an office building: The investigation of an opening design strategy with cellular automata. International Journal of Low-Carbon Technologies, 10(3), 313–320.
47. Kheiri, F. (2018). A review on optimization methods applied in energy-efficient building geometry and envelope design. Renewable and Sustainable Energy Reviews, 92, 897-920.
48. Knowles, J. & Nakayama, H. (2008). Meta-Modeling in Multiobjective Optimization. In: Branke, J.; Deb, K.; Miettinen, K.; Słowiński, R. (eds) Multiobjective Optimization. Lecture Notes in Computer Science, 5252. Springer, Berlin, Heidelberg.
49. Kuncheva, L.I., Bezdek, J.C. & Duin, R.P. (2001). Decision templates for multiple classifier fusion: an experimental comparison. Pattern recognition, 34(2), 299-314.
50. Kurian, C.P., George, V.I., Bhat, J. & Aithal, R.S. (2006). ANFIS model for the time series prediction of interior daylight illuminance. International Journal on Artificial Intelligence and Machine Learning, 6(3), 35–40. http://eprints.manipal.edu/id/eprint/1295
51. Ladybug Tools LLC. Ladybug Tools: shadow studies & view studies. Available at: https://www.ladybug.tools/lad ybug.html (Accessed 18 October 2021).
52. Ladybug Tools LLC. Honeybee: what is Honeybee? Available at: https://www.ladybug.tools/honeybee.html (Accessed 18 October 2021).
53. LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
54. Lee, E.S., Geisler-Moroder, D. & Ward, G. (2018). Modeling the Direct sun Component in Buildings Using Matrix Algebraic Approaches: Methods and Validation. Solar Energy, 160, 380–395.
55. Li, D.H. (2010). A review of daylight illuminance determinations and energy implications. Applied Energy, 87 (7), 2109-2118.
56. Li, D.H. & Lou, S. (2018). Review of solar irradiance and daylight illuminance modeling and sky classification. Renewable Energy, 126, 445-453.
57. Lin, B., Chen, H., Yu, Q., Zhou, X., Lv, S., et al. (2021). MOOSAS—A systematic solution for multiple objective building performance optimization in the early design stage. Building and Environment, 200, 107929.
58. Liu, Z., Wu, D., Liu, Y., Han, Z., Lun, L., et al. (2019). Accuracy analyses and model comparison of machine learning adopted in building energy consumption prediction. Energy Exploration & Exploitation, 37(4), 1426-1451.
59. Liu, Y., Colburn, A. & Inanici, M. (2020). Deep neural network approach for annual luminance simulations. Journal of Building Performance Simulation, 13(5), pp. 532-554.
60. Lorenz, C.L., Packianather, M., Spaeth, A.B. & De Souza, C.B. (2018). Artificial Neural Network-Based Modelling for Daylight Evaluations. Proceedings of the Symposium on Simulation for Architecture and Urban Design, 1-8.
61. Lu, W.S., Fung, A., Peng Y., Liang, C. & Rowlinson, S. (2014). Cost-benefit analysis of Building Information Modeling implementation in building projects through demystification of time-effort distribution curves. Building and Environment, 82, 317–327.
62. Machairas V., Tsangrassoulis A. & Axarli K. (2014). Algorithms for optimization of building design: A review. Renewable and Sustainable Energy Reviews, 31, 101–112.
63. Maesano, C. & Annesi-Maesano, I. (2012). Impact of Lighting on School Performance in European Classrooms. Paris, France.
64. Mannor, S.; Jin, X.; Han, J.; & Zhang, X. (2011). K-Means Clustering. In Encyclopedia of Machine Learning. Springer Science and Business Media, 563–564.
65. Mardaljevic, J. (2015). Climate-based daylight modelling and its discontents. Loughborough University. Conference contribution. https://hdl.handle.net/2134/19993
66. Markovic, R., Grintal, E., Wölki, D., Frisch, J. & Treeck, C. (2018). Window opening model using deep learning methods. Building and Environment, 145, 319-329.
67. Masouleh, K.B. (2018). Building Energy Optimisation Using Machine Learning and Metaheuristic Algorithms. Doctoral dissertation, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology.
68. Miljana, H., Dubois, M-C., Wall, M. & Snow, M. (Eds.) (2011). International Survey About Digital Tools Used by Architects for Solar Design. IEA SHC. http://task41.iea-shc.org/Data/Sites/1/publications/International_Survey_About_Digital_Tools_Used_by_Architects_for_Solar_Design.pdf
69. Mitchell, T.M. (1997). Machine Learning. McGraw-Hill Higher Education, New York
70. Nabil, A. & Mardaljevic, J. (2006). Useful daylight illuminances: A replacement for daylight factors. Energy and Buildings, 38(7), 905-913.
71. Nasrollahi, N. & Shokri, E. (2016). Daylight illuminance in urban environments for visual comfort and energy performance. Renewable and Sustainable Energy Reviews, 66, 861-874.
72. New Buildings Institute. Daylight Pattern Guide. Available at: https://patternguide.advancedbuildings.net/using-this-guide/analysis-methods/lux-clear-sky.html (Accessed 18 October 2021).
73. Ngarambe, J., Irakoze, A., Yun, GY. & Kim, G. (2020). Comparative Performance of Machine Learning Algorithms in the Prediction of Indoor Daylight Illuminances. Sustainability, 12(11), 4471.
74. Nguyen, A.T., Reiter, S. & Rigo, P. (2014). A review on simulation-based optimization methods applied to building performance analysis. Applied Energy, 113, 1043-1058.
75. Olu-Ajayi, R., Alaka, H., Sulaimon, I., Sunmola, F. & Ajayi, S. (2022). Building energy consumption prediction for residential buildings using deep learning and other machine learning techniques. Journal of Building Engineering, 45, 103406.
76. Patel, J., Shah, S., Thakkar, P. & Kotecha, K. (2015). Predicting stock and stock price index movement using trend deterministic data preparation and machine learning techniques. Expert systems with applications, 42(1), 259-268.
77. Reinhart, C.F. & Walkenhorst, O. (2001). Validation of dynamic RADIANCE-based daylight simulations for a test office with external blinds. Energy and Buildings, 33(7), 683–697.
78. Reinhart, C.F., Mardaljevic, J. & Rogers, Z. (2006). Dynamic daylight performance metrics for sustainable building design. The Journal of the Illuminating Engineering Society, 3(1), 7-31.
79. Rogers, Z. & Goldman, D. (2006). Daylighting Metric Development Using Daylight Autonomy Calculations in the Sensor Placement Optimization Tool. Architectural Energy Corporation, Boulder, Colorado, USA. http://www.daylightinginnovations.com/system/public_assets/original/SPOT_Daylight%20Autonomy%20Report.pdf
80. Rumelhart, D., Hinton, G. & Williams, R. (1986). Learning representations by back-propagating errors. Nature, 323, 533-536.
81. Rutten, D. (2013). Galapagos: On the Logic and Limitations of Generic Solvers. Architectural Design, 83(2), 132-135.
82. Sahu, M., Bhattacharjee, B. & Kaushik, S.C. (2012). Thermal design of air-conditioned building for tropical climate using admittance method and genetic algorithm. Energy and Buildings, 53, 1-6.
83. Saylor Academy. The Coefficient of Determination. Available at: https://saylordotorg.github.io/text_introductory-statistics/s14-06-the-coefficient-of-determinati.html (Accessed 18 October 2021).
84. Seyedzadeh, S., Rahimian, F., Glesk, I. & Roper, M. (2018). Machine learning for estimation of building energy consumption and performance: a review. Visualization in Engineering, 6, 5.
85. Seyedzadeh, S., Rahimian, F.P., Rastogi, P. & Glesk, I. (2019). Tuning machine learning models for prediction of building energy loads. Sustainable Cities and Society, 47, 101484.
86. Shen, E., Hu, Jia. & Patel, M. (2014). Energy and visual comfort analysis of lighting and daylight control strategies. Building and Environment, 78, 155-170.
87. Shi, X. (2011). Design optimization of insulation usage and space conditioning load using energy simulation and genetic algorithm. Energy, 36(3), 1659-1667.
88. Shishegar, N. & Boubekri, M. (2016, April). Natural Light and Productivity: Analyzing the Impacts of Daylighting on Students’ and Workers’ Health and Alertness. 2016 International Conference on “Health, Biological and Life Science”, Istanbul, Turkey.
89. Si, B., Tian, Z., Jin, X., et al. (2016). Performance indices and evaluation of algorithms in building energy efficient design optimization. Energy, 114, 100-112.
90. Si, B., Wang, J., Yao, X., et al. (2019). Multi-objective optimization design of a complex building based on an artificial neural network and performance evaluation of algorithms. Advanced Engineering Informatics, 40, 93-109.
91. Singh, A., Thakur, N. & Sharma, A. (2016, March). A review of supervised machine learning algorithms. In 2016 3rd International Conference on Computing for Sustainable Global Development, New Delhi, India.
92. Soni, J., Ansari, U., Sharma, D. & Soni, S. (2011). Predictive data mining for medical diagnosis: An overview of heart disease prediction. International Journal of Computer Applications, 17(8), 43-48.
93. Stevanović, S. (2013). Optimization of passive solar design strategies: a review. Renewable and Sustainable Energy Reviews, 25, 177-196.
94. Talaei, M., Mahdavinejad, M., Azari, R., Prieto, A. & Sangin, H. (2021). Multi-objective optimization of building-integrated microal-gae photobioreactors for energy and daylighting performance. Journal of Building Engineering, 42, 102832.
95. Touloupaki, E. & Theodosiou, T. (2017). Performance simulation integrated in parametric 3D modeling as a method for early stage design optimization—A review. Energies, 10(5), 637.
96. Trotter, A. (1911). Illumination; its distribution and measurement. Nature, 88, 72-73.
97. Tuhus-Dubrow, D. & Krarti, M. (2010). Genetic-algorithm based approach to optimize building envelope design for residential buildings. Building and Environment, 45(7), 1574-1581.
98. Tzempelikos, A. & Athienitis, A.K. (2007). The impact of shading design and control on building cooling and lighting demand. Solar Energy, 81(3), 369-382.
99. UNFCCC. (2015, December). Adoption of The Paris Agreement. Proposal by the President. https://unfccc.int/resource/docs/2015/cop21/eng/l09.pdf
100. Ürge-Vorsatz, D., Eyre, N., Graham, P., Harvey, D., Herwich, E., et al. (2012). Energy End-Use: Buildings. Global Energy Assessment - Toward a Sustainable Future, Cambridge University Press.
101. Veitch, J.A., Christoffersen, J. & Galasiu, A.D. (2012, October). Daylight and View through Residential Windows: Effects on Well-being. LD+A Magazine.
102. Vier, R. Octopus. Available at: https://www.food4rhino.com/en/app/octopus (Accessed 18 October 2021).
103. Pigg, S. & Vogen, A. (2006). Energy Savings from Daylighting: A Controlled Experiment. In Proceedings of ACEEE Buildings.
104. Waheeb, W., Ghazali, R., Ismail, L.H. & Kadir, A.A. (2019). Modelling and forecasting indoor illumination time series data from light pipe system. In: Saeed, F., Gazem, N., Mohammed, F., Busalim, A. (eds) Recent Trends in Data Science and Soft Computing. IRICT 2018. Advances in Intelligent Systems and Computing, 843. Springer, Cham.
105. Wallicei. An Evolutionary Multi-Objective Optimization and Analytic Engine for Grasshopper 3D. Available at: https://www.wallacei.com/ (Accessed 18 October 2021).
106. Wong, S.L., Wan, K.K. & Lam, T.N. (2010). Artificial neural networks for energy analysis of office buildings with daylighting. Applied Energy, 87 (2), 551-557.
107. Wright, J.A., Brownlee, A., Mourshed, M.M. & Wang, M. (2013). Multi-objective optimization of cellular fenestration by an evolutionary algorithm. Journal of Building Performance Simulation, 7(1), 33–51.
108. Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., et al. (2008). Top 10 algorithms in data mining. Knowledge and Information Systems, 14, 1-37.
109. Yi, Y.K. & Malkawi, A.M. (2009). Optimizing building form for energy performance based on hierarchical geometry relation. Automation in Construction, 18 (6), 825–833.
110. Yigit, S. (2021). A machine-learning-based method for thermal design optimization of residential buildings in highly urbanized areas of Turkey. Journal of Building Engineering, 38, 102225.
111. Zhang, C. & Ma, Y. (Eds.). (2012). Ensemble machine learning: methods and applications. Springer Science & Business Media.
112. Zhang, A., Bokel, R., Dobbelsteen, A.V.D., et al. (2017). Optimization of thermal and daylight performance of school buildings based on a multi-objective genetic algorithm in the cold climate of China. Energy and Buildings, 139, 371–384.
113. Zhang, Z.X. (2019). Boosting Algorithms Explained: Theory, Implementation, and Visualization. Available at: https://towardsdatascience.com/boosting-algorithms-explained-d38f56ef3f30 (Accessed 18 October 2021).
114. Zhang, L., Xie, Y., Chen, J., et al. (2021). A study on multiform multi-objective evolutionary optimization. Memetic Computing, 13, 307-318.
115. Zhou, S. & Liu, D. (2015). Prediction of daylighting and energy performance using artificial neural network and support vector machine. American Journal of Civil Engineering and Architecture, 3, 1–8.
116. Zitzler, E., Laumanns, M. & Thiele, L. (2001). SPEA2: Improving the strength pareto evolutionary algorithm. TIK-Report, 103. Swiss Federal Institute of Technology Zurich, Institute for Technical Informatics and Communication Networks.
117. Zou, Y., Zhan, Q. & Xiang, K. (2021). A comprehensive method for optimizing the design of a regular architectural space to improve building performance. Energy Reports, 7, 981-996.