簡易檢索 / 詳目顯示

研究生: 張俊鴻
Teo, Chun-Hong
論文名稱: 以可控晶格間距Ni-Co 層狀雙氫氧化合 物爲高效超級電容
Ni-containing ZIF-67 derived NiCo-LDH with controllable lattice spacing for high performance supercapacitor
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 66
中文關鍵詞: 超級電容層狀雙氫氧化物有機金屬骨架鈷酸鹽沸石咪唑酯骨架
外文關鍵詞: Supercapacitor, Layer Double Hydroxide, Metal Organic Framework, Zeolitic Imidazolate Framework-67
相關次數: 點閱:75下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是通過水,甲醇混合液處理ZIF-67 作爲基板結合鎳離子製成鈷鎳-層狀雙
    氫氧化合物(NiCo-LDH),這個方法的目的是爲了更好的控制鈷離子和鎳離子的
    比例,同時本研究的pH 調配選用氫氧化鈉(NaOH)也是爲了能更加精準的控制pH
    值得比例,本研究的pH 值調配主要介於7~8.5 之間,同時還調配了兩份pH 值大
    約爲10 和11.5 的樣品作爲參考,本研究通過XRD 分析確認到在不同數值的pH
    值對LDH 晶格間距的變化呈反比關係,并且這個變化對LDH 作爲超級電容的效能
    帶來影響,在研究中成功確認了在pH7.88 所製程的樣品擁有最高的效能(988
    F/g,1 A/g),并且以此爲基礎添加2mL 0.1M NH4Cl 所製成的樣品進一步對LDH
    的效能帶來提升,達到1473 F/g(1 A/g)

    This thesis is working about the supercapacitor, we use the NiCo-LDH to become our
    pseudocapacitor materials to prepare the high capacitance performance supercapacitor. In this work, we use the water-methanol mix solution to synthesis Ni-contain ZIF-67 and follow it to synthesis NiCo-LDH, we successfully use the different pH conditions to control the lattice spacing of LDH and find the best condition is pH 7.88 to synthesis our supercapacitor, we show high performance with 1473 F/g at 1 A/g.

    摘要 I 總目錄 XV 圖目錄 XVIII 表目錄 XX 第1章 前言 1 第2章 文獻回顧 2 2.1 超級電容介紹 2 2.1.1 超級電容簡介 2 2.1.2 雙電層電容(Electrostatic double-layer capacitor, EDLC) 3 2.1.3 僞電容 (Pseudocapacitor,PC) 4 2.2 金屬有機骨架(metal-organic framework, MOF) 6 2.2.1 沸石咪唑酯骨架-67(Zeolitic Imidazolate Framework-67,ZIF-67) 7 2.3 過渡金屬 (Transition Metal) 8 2.3.1 金屬氫氧化物 10 2.3.2 層狀雙氫氧化合物 (Layered Double Hydroxides, LDH) 11 第3章 儀器設備與實驗方法 13 3.1 實驗藥品 13 3.2 實驗流程 14 3.3 實驗製備 15 3.4 樣品分析 16 3.4.1 掃描式電子顯微鏡 (scanning electron microscope, SEM) 16 3.4.2 X-光繞射分析儀 (X-ray Diffractometer, XRD) 17 3.4.3 傅里葉轉換紅外光譜儀 (Fourier-transform infrared spectroscopy, FTIR) 17 3.4.4 X-光光電子能譜儀 (X-Ray Photoelectron Sprectroscpoe, XPS) 18 3.4.5 穿透式電子顯微鏡 (Transmission electron microscope, TEM) 18 3.4.6 拉曼光譜儀 (Raman Spectrometer) 19 3.4.7 電化學工作站 (Electrochemical workstation) 19 第4章 結果與討論 20 4.1 pH值調控 20 4.1.1 SEM 20 4.1.2 XRD 23 4.1.3 FTIR 25 4.1.4 XPS分析 27 4.1.5 In-situ Raman 31 4.1.6 電化學分析 34 4.2 NH4Cl調控 38 4.2.1 SEM分析 38 4.2.2 XRD分析 39 4.2.3 FTIR分析 41 4.2.4 XPS分析 43 4.2.5 TEM分析 46 4.2.6 Insitu-Raman 48 4.2.7 電化學分析 51 第5章 結論 55 第6章 參考文獻 56 第7章 附錄 62

    1. Zhang, L., et al., A review of supercapacitor modeling, estimation, and applications: A control/management perspective. Renewable and Sustainable Energy Reviews, 2018. 81: p. 1868-1878.
    2. Poonam, et al., Review of supercapacitors: Materials and devices. Journal of Energy Storage, 2019. 21: p. 801-825.
    3. Devillers, N., et al., Review of characterization methods for supercapacitor modelling. Journal of Power Sources, 2014. 246: p. 596-608.
    4. Borenstein, A., et al., Carbon-based composite materials for supercapacitor electrodes: a review. Journal of Materials Chemistry A, 2017. 5(25): p. 12653-12672.
    5. Ke, Q. and J. Wang, Graphene-based materials for supercapacitor electrodes – A review. Journal of Materiomics, 2016. 2(1): p. 37-54.
    6. Jiang, Y. and J. Liu, Definitions of Pseudocapacitive Materials: A Brief Review. Energy & Environmental Materials, 2019. 2(1): p. 30-37.
    7. Fisher, R.A., M.R. Watt, and W. Jud Ready, Functionalized Carbon Nanotube Supercapacitor Electrodes: A Review on Pseudocapacitive Materials. ECS Journal of Solid State Science and Technology, 2013. 2(10): p. M3170-M3177.
    8. Muzaffar, A., et al., A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renewable and Sustainable Energy Reviews, 2019. 101: p. 123-145.
    9. Li, B., et al., Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy & Environmental Science, 2016. 9(1): p. 102-106.
    10. Vangari, M., T. Pryor, and L. Jiang, Supercapacitors: Review of Materials and Fabrication Methods. Journal of Energy Engineering, 2013. 139(2): p. 72-79.
    11. Lin, Z. and X. Qiao, Coral-like Co3O4 Decorated N-doped Carbon Particles as active Materials for Oxygen Reduction Reaction and Supercapacitor. Sci Rep, 2018. 8(1): p. 1802.
    12. Zhang, A., et al., Facile one-pot hydrothermal synthesis of particle-based nitrogen-doped carbon spheres and their supercapacitor performance. New Journal of Chemistry, 2018. 42(9): p. 6903-6909.
    13. Gulzar, U., et al., Next-generation textiles: from embedded supercapacitors to lithium ion batteries. Journal of Materials Chemistry A, 2016. 4(43): p. 16771-16800.
    14. Ghanbari, T., F. Abnisa, and W.M.A. Wan Daud, A review on production of metal organic frameworks (MOF) for CO2 adsorption. Sci Total Environ, 2020. 707: p. 135090.
    15. Avci, G., S. Velioglu, and S. Keskin, High-Throughput Screening of MOF Adsorbents and Membranes for H2 Purification and CO2 Capture. ACS Appl Mater Interfaces, 2018. 10(39): p. 33693-33706.
    16. Atci, E., I. Erucar, and S. Keskin, Adsorption and Transport of CH4, CO2, H2 Mixtures in a Bio-MOF Material from Molecular Simulations. The Journal of Physical Chemistry C, 2011. 115(14): p. 6833-6840.
    17. Jamil, U., et al., Copper and calcium-based metal organic framework (MOF) catalyst for biodiesel production from waste cooking oil: A process optimization study. Energy Conversion and Management, 2020. 215.
    18. Liu, S., et al., S,N-Containing Co-MOF derived Co9S8@S,N-doped carbon materials as efficient oxygen electrocatalysts and supercapacitor electrode materials. Inorganic Chemistry Frontiers, 2017. 4(3): p. 491-498.
    19. Hou, S.L., et al., A Noble-Metal-Free Metal-Organic Framework (MOF) Catalyst for the Highly Efficient Conversion of CO2 with Propargylic Alcohols. Angew Chem Int Ed Engl, 2019. 58(2): p. 577-581.
    20. Liang, X., et al., The activation of Co-MOF-74 with open metal sites and their corresponding CO/N2 adsorptive separation performance. Microporous and Mesoporous Materials, 2021. 320.
    21. Zhou, Q., Y. Gong, and K. Tao, Calcination/phosphorization of dual Ni/Co-MOF into NiCoP/C nanohybrid with enhanced electrochemical property for high energy density asymmetric supercapacitor. Electrochimica Acta, 2019. 320.
    22. Matatagui, D., et al., Improving Sensitivity of a Chemoresistive Hydrogen Sensor by Combining ZIF-8 and ZIF-67 Nanocrystals. Proceedings, 2017. 1(4).
    23. Chen, H., et al., Nickel-Cobalt Layered Double Hydroxide Nanosheets for High-performance Supercapacitor Electrode Materials. Advanced Functional Materials, 2014. 24(7): p. 934-942.
    24. Tran, N.T., J. Kim, and M.R. Othman, Microporous ZIF-8 and ZIF-67 membranes grown on mesoporous alumina substrate for selective propylene transport. Separation and Purification Technology, 2020. 233.
    25. Zhong, G., D. Liu, and J. Zhang, The application of ZIF-67 and its derivatives: adsorption, separation, electrochemistry and catalysts. Journal of Materials Chemistry A, 2018. 6(5): p. 1887-1899.
    26. Parra-Puerto, A., et al., Supported Transition Metal Phosphides: Activity Survey for HER, ORR, OER, and Corrosion Resistance in Acid and Alkaline Electrolytes. ACS Catalysis, 2019. 9(12): p. 11515-11529.
    27. Guo, X., et al., The application of transition metal cobaltites in electrochemistry. Energy Storage Materials, 2019. 23: p. 439-465.
    28. di Lena, F. and K. Matyjaszewski, Transition metal catalysts for controlled radical polymerization. Progress in Polymer Science, 2010. 35(8): p. 959-1021.
    29. Brezesinski, T., et al., Next generation pseudocapacitor materials from sol–gel derived transition metal oxides. Journal of Sol-Gel Science and Technology, 2010. 57(3): p. 330-335.
    30. Lee, D.J., et al., Facile synthesis of metal hydroxide nanoplates and their application as lithium-ion battery anodes. Journal of Materials Chemistry A, 2017. 5(18): p. 8744-8751.
    31. Shi, F., et al., Metal oxide/hydroxide-based materials for supercapacitors. RSC Adv., 2014. 4(79): p. 41910-41921.
    32. Hong, N., et al., Enhanced mechanical, thermal and flame retardant properties by combining graphene nanosheets and metal hydroxide nanorods for Acrylonitrile–Butadiene–Styrene copolymer composite. Composites Part A: Applied Science and Manufacturing, 2014. 64: p. 203-210.
    33. Vialat, P., et al., High-Performing Monometallic Cobalt Layered Double Hydroxide Supercapacitor with Defined Local Structure. Advanced Functional Materials, 2014. 24(30): p. 4831-4842.
    34. Elsonbaty, A., et al., Novel ZIF67/Mn/MWCNTs decorated with layer double hydroxide supercapacitor electrodes. Electrochimica Acta, 2021. 368.
    35. Jing, C., et al., Growth of cobalt-aluminum layered double hydroxide nanosheets on graphene oxide towards high performance supercapacitors: The important role of layer structure. Applied Surface Science, 2019. 496.
    36. Mishra, G., B. Dash, and S. Pandey, Layered double hydroxides: A brief review from fundamentals to application as evolving biomaterials. Applied Clay Science, 2018. 153: p. 172-186.
    37. Wang, M., et al., Metal–organic frameworks (ZIF-67) as efficient cocatalysts for photocatalytic reduction of CO2: the role of the morphology effect. Journal of Materials Chemistry A, 2018. 6(11): p. 4768-4775.
    38. Wang, L., et al., In Situ Fabrication of a Uniform Co-MOF Shell Coordinated with CoNiO2 to Enhance the Energy Storage Capability of NiCo-LDH via Vapor-Phase Growth. ACS Appl Mater Interfaces, 2020. 12(42): p. 47526-47538.
    39. Asadian, E., S. Shahrokhian, and A. Iraji Zad, Highly sensitive nonenzymetic glucose sensing platform based on MOF-derived NiCo LDH nanosheets/graphene nanoribbons composite. Journal of Electroanalytical Chemistry, 2018. 808: p. 114-123.
    40. Sun, Y., et al., Improved photocatalytic activity of Ni2P/NiCo-LDH composites via a Co–P bond charge transfer channel to degrade tetracycline under visible light. Journal of Alloys and Compounds, 2021. 852.
    41. Zeng, M., et al., Interlayer Effect in NiCo Layered Double Hydroxide for Promoted Electrocatalytic Urea Oxidation. ACS Sustainable Chemistry & Engineering, 2019. 7(5): p. 4777-4783.
    42. Hunter, B.M., et al., Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity. Energy & Environmental Science, 2016. 9(5): p. 1734-1743.
    43. Yuan, Y. and W. Shi, Preparation and properties of exfoliated nanocomposites through intercalated a photoinitiator into LDH interlayer used for UV curing coatings. Progress in Organic Coatings, 2010. 69(1): p. 92-99.
    44. Zhang, Y. and J.R.G. Evans, Alignment of layered double hydroxide platelets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012. 408: p. 71-78.
    45. Wang, L., et al., Nanotubular Ni-supported graphene @ hierarchical NiCo-LDH with ultrahigh volumetric capacitance for supercapacitors. Applied Surface Science, 2018. 453: p. 230-237.
    46. Wang, T., et al., 2-Methylimidazole-Derived Ni-Co Layered Double Hydroxide Nanosheets as High Rate Capability and High Energy Density Storage Material in Hybrid Supercapacitors. ACS Appl Mater Interfaces, 2017. 9(18): p. 15510-15524.
    47. Khan, A., et al., ZIF-67 filled PDMS mixed matrix membranes for recovery of ethanol via pervaporation. Separation and Purification Technology, 2018. 206: p. 50-58.
    48. Cai, X., et al., Solvothermal synthesis of NiCo-layered double hydroxide nanosheets decorated on RGO sheets for high performance supercapacitor. Chemical Engineering Journal, 2015. 268: p. 251-259.
    49. Xu, K., et al., Understanding the effect of polypyrrole and poly(3,4-ethylenedioxythiophene) on enhancing the supercapacitor performance of NiCo2O4electrodes. J. Mater. Chem. A, 2014. 2(39): p. 16731-16739.
    50. Bao, W., et al., Controlled preparation of Ni–Al LDH–NO3 by a dual-anion intercalating process for supercapacitors. Ionics, 2019. 25(8): p. 3859-3866.
    51. Chen, H., et al., Preparation of reduced graphite oxide loaded with cobalt(II) and nitrogen co-doped carbon polyhedrons from a metal-organic framework (type ZIF-67), and its application to electrochemical determination of metronidazole. Mikrochim Acta, 2019. 186(9): p. 623.
    52. Lai, W., et al., In situ Raman spectroscopic study towards the growth and excellent HER catalysis of Ni/Ni(OH)2 heterostructure. International Journal of Hydrogen Energy, 2021. 46(53): p. 26861-26872.
    53. Hall, D.S., et al., Raman and infrared spectroscopy of alpha and beta phases of thin nickel hydroxide films electrochemically formed on nickel. J Phys Chem A, 2012. 116(25): p. 6771-84.
    54. <56.A.Audemer et al 1997 J. Electrochem. Soc. 144 2614.pdf>.
    55. Joya, K.S. and X. Sala, In situ Raman and surface-enhanced Raman spectroscopy on working electrodes: spectroelectrochemical characterization of water oxidation electrocatalysts. Phys Chem Chem Phys, 2015. 17(33): p. 21094-103.
    56. Dai, S., et al., In situ Raman study of nickel bicarbonate for high-performance energy storage device. Nano Energy, 2019. 64.
    57. Klaus, S., et al., Effects of Fe Electrolyte Impurities on Ni(OH)2/NiOOH Structure and Oxygen Evolution Activity. The Journal of Physical Chemistry C, 2015. 119(13): p. 7243-7254.
    58. Wei, D., et al., CNT/Co3S4@NiCo LDH ternary nanocomposites as battery-type electrode materials for hybrid supercapacitors. Journal of Alloys and Compounds, 2020. 824.
    59. Liu, L., et al., Self-supported 3D NiCo-LDH/Gr composite nanosheets array electrode for high-performance supercapacitor. Journal of Alloys and Compounds, 2018. 763: p. 926-934.
    60. Yang, P., et al., Controllable crystal growth of a NiCo-LDH nanostructure anchored onto KCu7S4 nanowires via a facile solvothermal method for supercapacitor application. CrystEngComm, 2020. 22(9): p. 1602-1609.
    61. Zhu, F., et al., Construction of porous interface on CNTs@NiCo-LDH core-shell nanotube arrays for supercapacitor applications. Chemical Engineering Journal, 2020. 383.
    62. Jacox, M.E. and W.E. Thompson, Infrared spectrum of the NH4-d(n)+ cation trapped in solid neon. Phys Chem Chem Phys, 2005. 7(5): p. 768-75.
    63. Li, M., et al., Three-dimensional porous MXene/NiCo-LDH composite for high performance non-enzymatic glucose sensor. Applied Surface Science, 2019. 495.
    64. Pauporté, T., et al., Direct Low-Temperature Deposition of Crystallized CoOOH Films by Potentiostatic Electrolysis. Journal of The Electrochemical Society, 2005. 152(2).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE