簡易檢索 / 詳目顯示

研究生: 李昱鋒
Lee, Yu-Feng
論文名稱: 使用串聯彈性驅動於仿人機器手腕之二維扭矩與阻抗控制
Two-dimensional Torque and Impedance Control of a Humanoid Robotic Wrist Using Series Elastic Actuation
指導教授: 藍兆杰
Lan, Chao-Chieh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 119
中文關鍵詞: 仿人機器手腕撓性元件設計串聯彈性致動器扭矩控制阻抗控制
外文關鍵詞: humanoid robotic wrist, compliant component design, series elastic actuator, torque control, impedance control
相關次數: 點閱:88下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文針對一仿人機器手腕設計控制器以提升此腕機構之人機親合性。腕機構具傾俯(Pitch)及偏擺(Yaw)兩個自由度,有別於傳統機器人使用旋轉馬達及體積大之傳動機構,腕機構使用線性步進馬達作為致動器,搭配導螺桿放大力量輸出,配合曲柄滑塊機構及5R球面機構,使腕機構的尺寸、重量、運動範圍以及扭矩密度皆與人類手腕相近。將平面彈簧取代腕機構中曲柄滑塊的連桿,作為腕機構之撓性耦桿並利用串聯彈性致動器實現二維撓性驅動。相較於剛性致動器,串聯彈性致動器機械阻抗較小,因此具有良好的反向驅動能力、可儲存能量以及高力量控制準確性等優點,且不需力量感測器即可達到力量回授,故常應用於仿生機構、復健機構,以及服務型機器人等領域。
    首先討論步進馬達特性以及控制器硬體性能,探討步進馬達驅動方式並以實驗鑑別馬達參數,接著對腕機構進行運動分析及力量分析,以作為實現腕機構之扭矩與阻抗控制的基礎。腕機構中撓性耦桿之設計為撓性驅動的重要關鍵,針對五直樑平面彈簧進行最佳設計,並透過商用軟體ANSYS進行有限元素分析,得到具抗側向變形之撓性耦桿,並驗證腕機構輸出扭矩與理論值相同。利用撓性驅動針對腕機構設計扭矩控制器,並透過模擬與實驗進行驗證,接著利用扭矩控制器建立腕機構之阻抗控制器並設計實驗進行驗證。本文透過扭矩控制及阻抗控制,期許能提升腕機構與人類或外界環境互動時之親和性,應用於服務型機器人領域。

    It has been a challenge to design a humanoid robots possessing intrinsic compliant actuation, especially for robots required to be manipulated multi-dimensionally. Adapting from human, robotic manipulators with internal mechanical compliance can perform high-quality force/torque control and more safely interact with human. This thesis presents a humanoid robotic wrist whose size, range, and torque density are comparable to those of a human wrist. To achieve two-dimensional compliant actuation, two linear stepper motors with leadscrew transmissions are selected and two internal compliant couplers are proposed. Building a planar spring model and utilizing the optimal design method minilize the maximum stress of compliant coupler. Through slider-crank and spherical mechanisms, the linear elasticity is converted to rotary elasticity to control the pitch and yaw torques at the same time.
    Static model of the compliant wrist is developed to analyze its force performance. Establishing a PD force controller and a modified friction model enhances the ability of force/torque control. The experiments results demonstrate that the wrist can achieve accurate and fast force/torque control. Finally, based on torque controller, an impedance controller is developed. Designing a series of experiments to prove that the wrist can ensure the safety and change the virtual impedance between the end effector and the environment. We expect this novel compliant wrist to serve as an alternative for applications involving human-robot interaction.

    摘要 I 英文延伸摘要 III 致謝 XI 目錄 XIII 表目錄 XVIII 圖目錄 XIX 符號說明 XXV 第一章 緒論 1 1.1 背景介紹 1 1.1.1 人機互動 1 1.1.2 互動控制 3 1.2 文獻回顧 7 1.2.1 串聯彈性致動器之設計 7 1.2.2 串聯彈性致動器之應用 9 1.3 研究動機及目標 12 1.4 論文架構 14 第二章 腕機構驅動與機構 15 2.1 前言 15 2.2 步進馬達 15 2.2.1 馬達與控制器選用 15 2.2.2 馬達驅動公式推導 17 2.3 步進馬達參數鑑別 20 2.3.1 步進馬達驅動與感測電路 21 2.3.2 參數鑑別實驗 22 2.4 撓性腕機構分析 25 2.4.1 馬達位置關係 25 2.4.2 腕機構運動分析 27 2.4.3 腕機構力量分析 30 第三章 撓性耦桿設計與分析 33 3.1 前言 33 3.2 平面彈簧設計程式 34 3.2.1 最佳化模型 35 3.2.2 最佳化結果 38 3.3 平面彈簧線性之有限元素法分析 39 3.3.1 並聯方式選擇 40 3.3.2 平面彈簧設計參數Lx值討論 43 3.3.3 平面彈簧之應力分析 44 3.4 偏擺機構之非線性靜態結構分析 45 3.5 腕機構扭矩實驗 47 3.5.1 腕機構扭矩控制實驗 47 3.5.2 腕機構開迴路扭矩實驗 48 第四章 扭矩控制 51 4.1 前言 51 4.2 串聯彈性致動器 51 4.2.1 公式簡化 52 4.2.2 感測器校正 53 4.3 力量控制器 56 4.3.1 PD力量控制器 56 4.3.2 控制器簡化比較 58 4.4 摩擦力補償 60 4.4.1 摩擦力模型簡介 60 4.4.2 摩擦力方向判定 61 4.4.3 摩擦力鑑別實驗 63 4.5 串聯彈性致動器力量控制 67 4.5.1 控制器濾波 67 4.5.2 摩擦力模型修正 68 4.5.3 控制器增益值討論 70 4.6 腕機構扭矩控制 72 4.6.1 腕機構性能分析 72 4.6.2 耦桿勁度之影響 78 第五章 阻抗控制 81 5.1 前言 81 5.2 腕機構旋轉勁度量測實驗 81 5.3 阻抗控制器 84 5.4 定阻抗控制實驗 90 5.4.1 位置控制實驗 90 5.4.2 勁度控制實驗 91 5.5 變阻抗控制實驗 93 5.5.1 勁度控制實驗之步階響應 93 5.5.2 位置控制接觸力實驗 96 5.5.3 外界干擾實驗 102 第六章 結論與未來工作 105 6.1 結論 105 6.2 未來工作 106 參考文獻 109 著作權 119

    [1] G. A. Pratt and M. M. Williamson, 1995, "Series elastic actuators," IEEE/RSJ International Conference on Human Robot Interaction and Cooperative Robots, Pittsburgh, 1, pp. 399-406
    [2] G. A. Pratt, M. M. Williamson, P. Dillworth, J. Pratt and A. Wright, 1997, "Stiffness isn't everything," Experimental robotics IV, Springer Berlin Heidelberg, pp. 253-262.
    [3] S. Dalley, T. E. Wiste, T. J. Withrow and M. Goldfarb, 2009, "Design of a multifunctional anthropomorphic prosthetic hand with extrinsic actuation," Mechatronics, IEEE/ASME Transactions, 14(6), pp.699-706.
    [4] M. Pietrusinski, I. Cajigas, M. Goldsmith, P. Bonato and C. Mavroidis, 2010, "Robotically generated force fields for stroke patient pelvic obliquity gait rehabilitation," Robotics and Automation (ICRA), International Conference IEEE, pp. 569-575.
    [5] M. Pietrusinski, I. Cajigas, Y. Mizikacioglu, M. Goldsmith, P. Bonato, and C. Mavroidis, 2010, "Gait rehabilitation therapy using robot generated force fields applied at the pelvis," Haptics Symposium IEEE, pp. 401-407.
    [6] R. V. Ham, T. G. Sugar, B. Vanderborght, K. W. Hollander and D. Lefeber, 2009, "Compliant actuator designs," Robotics & Automation Magazine, IEEE, 16(3), pp. 81-94.
    [7] M. Zinn, O. Khatib, B. Roth and J. K. Salisbury, 2004, "Playing it safe [human-friendly robots]," Robotics & Automation Magazine, IEEE, 11(2), pp. 12-21.
    [8] J. Choi, S. Hong, W. Lee, S. Kang, and M. Kim, 2011, "A robot joint with variable stiffness using leaf springs," Robotics, IEEE Transactions, 27(2), pp. 229-238.
    [9] R. J. Wang and H. P. Huang, 2012, "Mechanically stiffness-adjustable actuator using a leaf spring for safe physical human-robot interaction," Mechanics, 18(1), pp. 77-83.
    [10] J. J. Park and J. B. Song, 2010, "A nonlinear stiffness safe joint mechanism design for human robot interaction," Journal of Mechanical Design, 132(6), 061005.
    [11] N. C. Karavas, N. G. Tsagarakis and D. G. Caldwell, 2012, "Design, modeling and control of a series elastic actuator for an assistive knee exoskeleton," Biomedical Robotics and Biomechatronics (BioRob), 4th IEEE RAS & EMBS International Conference, pp. 1813-1819.
    [12] S. A. Migliore, E. A. Brown and S. P. DeWeerth, 2007, "Novel nonlinear elastic actuators for passively controlling robotic joint compliance," Journal of Mechanical Design, 129(4), pp. 406-412.
    [13] J. Zhao, X. Liu, X. Zang and X. Wu, 2012, "A pd control scheme for passive dynamic walking based on series elastic actuator," Mechatronics and Automation (ICMA), International Conference, IEEE, pp. 255-260.
    [14] J. Pratt, B. Krupp and C. Morse, 2002, "Series elastic actuators for high fidelity force control," Industrial Robot: An International Journal, 29(3), pp. 234-241.
    [15] L. Villani and J. De Schutter, 2008, "Force control," Springer handbook of robotics, Springer Berlin Heidelberg, pp. 161-185.
    [16] N. Hogan and S. P. Buerger, 2005, "Impedance and interaction control," Robotics and automation handbook, 19.
    [17] D. E. Whitney, 1987, "Historical perspective and state of the art in robot force control," The International Journal of Robotics Research, 6(1), pp. 3-14.
    [18] S. Chiaverini, B. Siciliano and L. Villani, 1999, "A survey of robot interaction control schemes with experimental comparison," Mechatronics, IEEE/ASME Transactions, 4(3), pp. 273-285.
    [19] H. Mehdi and O. Boubaker, 2012, "Stiffness and impedance control using Lyapunov theory for robot-aided rehabilitation," International Journal of Social Robotics, 4(1), pp. 107-119.
    [20] F. Almeida, A. Lopes and P. Abreu, 1999, "Force-impedance control: a new control strategy of robotic manipulators," Recent advances in Mechatronics, pp. 126-137.
    [21] L. M. Miller and J. Rosen, 2010, "Comparison of multi-sensor admittance control in joint space and task space for a seven degree of freedom upper limb exoskeleton," Biomedical Robotics and Biomechatronics (BioRob), 3rd IEEE RAS and EMBS International Conference, pp. 70-75.
    [22] W. Yu, J. Rosen and X. Li, "PID admittance control for an upper limb exoskeleton," American Control Conference (ACC), pp. 1124-1129.
    [23] K. Kong, J. Bae and M. Tomizuka, 2009, "Control of rotary series elastic actuator for ideal force-mode actuation in human–robot interaction applications," Mechatronics, IEEE/ASME Transactions, 14(1), pp. 105-118.
    [24] K. Kong, J. Bae and M. Tomizuka, 2012, "A compact rotary series elastic actuator for human assistive systems," Mechatronics, IEEE/ASME Transactions, 17(2), pp. 288-297.
    [25] C. Lagoda, A. C. Schou, A. H. Stienen, E. E. Hekman and H. van der kooij, 2010, "Design of an electric series elastic actuated joint for robotic gait rehabilitation training," Biomedical Robotics and Biomechatronics (BioRob), 3rd IEEE RAS and EMBS International Conference, pp. 21-26.
    [26] F. Sergi, D. Accoto, G. Carpino, N. L. Tagliamonte and E. Guglielmelli, 2012, "Design and characterization of a compact rotary series elastic actuator for knee assistance during overground walking," Biomedical Robotics and Biomechatronics (BioRob), 4th IEEE RAS & EMBS International Conference, pp. 1931-1936.
    [27] N. Paine, S. Oh and L. Sentis, 2014, "Design and control considerations for high-performance series elastic actuators," Mechatronics, IEEE/ASME Transactions, 19(3), pp. 1080-1091.
    [28] A. Calanca, and P. Fiorini, 2014, "Human-adaptive control of series elastic actuators," Robotica, 32(08), pp. 1301-1316.
    [29] A. Calanca, L. Capisani and P. Fiorini, 2014, "Robust force control of series elastic actuators." Actuators, vol. 3, no. 3, Multidisciplinary Digital Publishing Institute, pp. 180-204.
    [30] Y. Zhao, N. Paine and L. Sentis, 2014, "Feedback parameter selection for impedance control of series elastic actuators," Humanoid Robots (Humanoids), 14th IEEE-RAS International Conference, pp. 999-1006.
    [31] M. Grimmer, M. Eslamy, S. Gliech and A. Seyfarth, 2012, "A comparison of parallel-and series elastic elements in an actuator for mimicking human ankle joint in walking and running." Robotics and Automation (ICRA), IEEE International Conference, pp. 2463-2470.
    [32] A. Rodić, B. Miloradović, S. Popić and Đ. Urukalo, 2014, "On developing lightweight robot-arm of anthropomorphic characteristics," [Online]. Available: https://documents.epfl.ch/users/e/ea/eabdi/dropbox/MESROB%20revised/RODIC_ALEKSANDAR_paper.pdf
    [33] R. C. Luo, Y. H. Pu, C. H. Chen, J. R. Chang and Y. C. Li, 2011, "Design and Implementation of humanoid biped walking robot mechanism towards natural walking," Robotics and Biomimetics (ROBIO), IEEE International Conference, pp. 1165-1170.
    [34] T. Boaventura, G. A. Medrano-Cerda, C. Semini, J. Buchli and D. G. Caldwell, 2013, "Stability and performance of the compliance controller of the quadruped robot HyQ," Intelligent Robots and Systems (IROS), IEEE/RSJ International Conference, pp. 1458-1464.
    [35] C. Semini, 2013, "Is active impedance the key to a breakthrough for legged robots?," Preprint-to appear, Proceedings of International Symposium of Robotics Research (ISRR), Springer STAR Series.
    [36] M. Focchi, G. A. Medrano-Cerda, T. Boaventura, M. Frigerio, C. Semini, J. Buchli and D. G. Caldwell, 2014, "Robot impedance control and passivity analysis with inner torque and velocity feedback loops," arXiv preprint arXiv:1406.4047.
    [37] G. Pratt, P. Willisson, C. Bolton and A. Hofman, 2004, "Late motor processing in low-impedance robots: impedance control of series-elastic actuators," American Control Conference, vol. 4, pp. 3245-3251.
    [38] N. Paine, J. S. Mehling, J. Holley, N. A. Radford, G. Johnson, C. L. Fok and L. Sentis, 2015, "Actuator control for the NASA‐JSC Valkyrie humanoid robot: a decoupled dynamics approach for torque control of series elastic robots," Journal of Field Robotics, 32(3), pp. 378-396.
    [39] M. Hanlon, 2010, "Raytheon XOS 2: second generation exoskeleton," Gizmag| New and Emerging Technology News.
    [40] C. J. Chen, M. Y. Cheng and K. H. Su, 2013, "Observer-based impedance control and passive velocity control of power assisting devices for exercise and rehabilitation," Industrial Electronics Society, IECON 39th Annual Conference of the IEEE, pp. 6502-6507.
    [41] H. Yu, S. Huang, N. V. Thakor, G. Chen, S. L. Toh, M. Sta Cruz and C. Zhu, 2013, "A novel compact compliant actuator design for rehabilitation robots," Rehabilitation Robotics (ICORR), IEEE International Conference, pp. 1-6.
    [42] W. M. dos Santos and A. A. Siqueira, 2014, "Impedance control of a rotary series elastic actuator for knee rehabilitation," World Congress, vol. 19, no. 1, pp. 4801-4806.
    [43] M. Cestari, D. Sanz-Merodio, J. C. Arevalo and E. Garcia, 2015, "An adjustable compliant joint for lower-limb exoskeletons." Mechatronics, IEEE/ASME Transactions, 20(2), pp. 889-898.
    [44] J. W. Sensinger, 2008, "User-modulated impedance control of a prosthetic elbow in unconstrained, perturbed motion," Biomedical Engineering, IEEE Transactions, 55(3), pp. 1043-1055.
    [45] F. Sergi, M. M. Lee and M. K. O'Malley, 2013, "Design of a series elastic actuator for a compliant parallel wrist rehabilitation robot," Rehabilitation Robotics (ICORR), IEEE International Conference, pp. 1-6.
    [46] I. Jo and J. Bae, 2015, "Design and control of a wearable hand exoskeleton with force-controllable and compact actuator modules," Robotics and Automation (ICRA), IEEE International Conference, pp. 5596-5601.
    [47] Igus, inc., "自潤軸承iglidur® 線上目錄," [Online]. Available: http://www.igus.com.tw/wpck/2400/productoverview_iglidur
    [48] C. Y. Chu, J. Y. Xu and C. C. Lan, 2014, "Design and experiment of a compact wrist mechanism with high torque density," Mechanism and Machine Theory, 78, pp. 65-80.
    [49] 徐嘉佑,中華民國一〇二年,「具兩共置撓性驅動軸機器手腕之動力與控制」,碩士學位論文,國立成功大學機械工程學系。
    [50] 朱証裕,中華民國一〇四年,「發展一撓性仿人腕驅動器於親和人機互動」,碩士學位論文,國立成功大學機械工程學系。
    [51] M. Bodson, J. N. Chiasson, R. T. Novotnak and R. B. Rekowski, 1993, "High-performance nonlinear feedback control of a permanent magnet stepper motor," Control Systems Technology, IEEE Transaction, 1(1), pp. 5-14.
    [52] F. Nollet, T. Floquet and W. Perruquetti, 2008, "Observer-based second order sliding mode control laws for stepper motors," Control Engineering Practice, 16(4), pp. 429-443.
    [53] E. Dombre, G. Duchemin, P. Poignet, and F. Pierrot, 2003, "Dermarob: a safe robot for reconstructive surgery," Robotics and Automation, IEEE Transactions, 19(5), pp. 876-884.
    [54] Haydon Kerk, inc., "35000 series size 14 double stack stepper motor linear actuators," [Online]. Available: http://www.haydonkerk.com/LinearActuatorProducts/StepperMotorLinearActuators/LinearActuatorsHybrid/Size14DSLinearActuator/tabid/78/Default.aspx
    [55] 吳宜軒,中華民國一〇三年,「使用預載曲樑設計直線式變勁度機構」,碩士學位論文,國立成功大學機械工程學系。
    [56] ASM, Aerospace Specification Metals, inc., " Aerospace Specification Metals," [Online]. Available: http://www.aerospacemetals.com/contact-aerospace-metals.html
    [57] 大同特殊鋼株式會社, "S-STAR" [Online]. Available: http://www.daido.co.jp/products/tool/pdf/s_star.pdf
    [58] C. M. Chew, G. S. Hong and W. Zhou, 2004, "Series damper actuator: a novel force/torque control actuator," Humanoid Robots, 4th IEEE/RAS International Conference, vol. 2, pp. 533-546.
    [59] J. Hurst, A. Rizzi and D. Hobbelen, 2004, "Series elastic actuation: Potential and pitfalls," International Conference on Climbing and Walking Robots.
    [60] H. Vallery, R. Ekkelenkamp, H. Van Der Kooij and M. Buss, 2007, "Passive and accurate torque control of series elastic actuators," Intelligent Robots and Systems, IROS, IEEE/RSJ International Conference, pp. 3534-3538
    [61] N. S. Nise, 2008, Control Systems Engineering, John Wiley & Sons, Asia.
    [62] K. Ogata, 2010, Modern Control Engineering, Pearson Education, USA.
    [63] D. E. Whitney, 1997, "Force feedback control of manipulator fine motions," Journal of Dynamic Systems, Measurement and Control, 99(2), pp. 91-97.
    [64] M. Shams, M. Zarei-nejad and M. Safdari, 2008, "Fuzzy sliding mode control of a ball screw driven stage," Mechtronic and Embedded Systems and Applications (MESA), IEEE/ASME International Conference, pp. 369-374.
    [65] J. Susen, 2011, "A Study on the Ball Screw friction torque", Conference Studentské tvůrčí činnosti.
    [66] B. Armstrong-Hélouvry, P. Dupont and C. C. De Wit, 1994, "A survey of models, analysis tools and compensation methods for the control of machines with friction," Automatica, 30(7), pp. 1083-1138.
    [67] H. Olsson, K. J. Åström, C. C. De Wit, M. Gäfvert and P. Lischinsky, 1998, "Friction models and friction compensation," European journal of control, 4(3), pp. 176-195.
    [68] F. Altpeter, 1999, "Friction modeling, identification and compensation," Ph.D. dissertation, Ecole Polytechnique Federale de Lausanne.
    [69] G. Liu, 2002, "Decomposition-based friction compensation of mechanical systems," Mechatronics, 12(5), pp. 755-769.
    [70] G. Ferretti, G. Magnani, G. Martucci, P. Rocco and V. Stampacchia, "Friction model validation in sliding and presliding regimes with high resolution encoders," Experimental Robotics VIII, Springer Berlin Heidelberg, pp. 328-337.
    [71] L. Lu, B. Yao, Q. Wang and Z. Chen, 2008, "Adaptive robust control of linear motor systems with dynamic friction compensation using modified lugre model," Advanced Intelligent Mechatronics (AIM), IEEE/ASME International Conference, pp. 961-966.
    [72] L. Márton and N. Kutasi, 2005, "Practical identification method for Striebeck friction," 6th International Symposium of Hungarian Researchers in Computational Intelligence.
    [73] I. Virgala and M. K. Peter Frankovsky, 2013, "Friction Effect Analysis of a DC Motor." Am. J. Mech. Eng, 1(1), pp. 1-5.
    [74] E. Burdet, G. Ganesh, C. Yang and A. Albu-Schäffer, 2014, "Interaction force, impedance and trajectory adaptation: by humans, for robots," Experimental Robotics, Springer Berlin Heidelberg, pp. 331-345.

    下載圖示 校內:2020-08-31公開
    校外:2020-08-31公開
    QR CODE