簡易檢索 / 詳目顯示

研究生: 黃鑫雯
Wong, Xin-Wen
論文名稱: 開發膠態銅錯合物電解質及其在染料敏化太陽能電池之應用
Preparation of Copper Redox Polymer Gel Electrolytes for Dye-sensitized Solar Cell Applications
指導教授: 李玉郎
Lee, Yuh-Lang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 126
中文關鍵詞: 膠態電解質印刷式電解質銅錯合物氧化還原對
外文關鍵詞: Polymer gel electrolytes, Printable electrolytes, Copper redox mediators
相關次數: 點閱:34下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • This study focuses on the performance and stability of quasi-solid-state dye-sensitized solar cells (QS-DSSCs) with Cu2+/Cu1+ redox couple using various types of polymer gel electrolytes (PGEs) under specific conditions. Firstly, the performance of the device utilizing 7 wt% PVDF-HFP is evaluated under one sun condition. Although the efficiency is slightly lower than the liquid-state cell, the quasi-solid-state cell demonstrates promising performance, revealing much better stability than the liquid-state cell. It shows that the QS-DSSCs can maintain an efficiency of almost 100% of their initial value after 700 hours. Next, the electrolyte composition is optimized for indoor light conditions. Experimental results indicate that a lower concentration of Cu(dmby)2(TFSI)/Cu(dmby)2(TFSI)2 is advantageous for higher short-circuit current density due to lower light absorbance. By optimizing the electrolyte composition of Cu(dmby)2TFSI, Cu(dmby)2TFSI2, NMBI, and LiTFSI for indoor light conditions, the device can achieve an efficiency of 26.95% under 2000 lux illumination. Finally, the application of printable PGEs under indoor light conditions is investigated. It is found that the addition of PMMA and PVDF to the PEO electrolytes can enhance the open-circuit voltage and conversion efficiency of the devices, ascribed to the increase in the recombination resistance. Consequently, efficiencies of 23.97% and 24.19% respectively, were obtained for devices utilizing PEO+PMMA and PEO+PVDF under 2000 lux illumination.

    ABSTRACT I ACKNOWLEDGEMENT II TABLE OF CONTENTS VI LIST OF TABLES IX LIST OF FIGURES XI CHAPTER 1 1 1-1 Preface 1 1-2 Research Objective 2 CHAPTER 2 4 2-1 Milestone of Photovoltaic Cells Production 4 2-2 Introduction of Dye-sensitized Solar Cell (DSSC) 5 2-2-1 Working Principle 6 2-2-2 Electron Transfer Kinetic in DSSC 8 2-3 Structure of DSSC 10 2-3-1 Conducting Substrate 11 2-3-2 Metal Oxide Semiconductor 12 2-3-3 Photosensitizer/Dye 16 2-3-4 Electrolyte 27 2-3-5 Counter Electrode 38 2-3-6 Literature Review 41 CHAPTER 3 52 3-1 Chemicals and Materials 52 3-2 Instrument principle and analysis 54 3-2-1 Solar simulator 54 3-2-2 Indoor light simulation system 59 3-2-3 Electrochemical AC impedance analysis 60 3-2-4 Incident photon conversion efficiency measurement 68 3-2-5 Cyclic voltammetry instrument 69 3-2-6 General instruments 71 3-2-7 Preparation of TiO2 film 72 3-3 Experimental Procedure 73 3-3-1 Dye immersion 73 3-3-2 Electropolymerization of PEDOT counter electrode 74 3-3-3 Preparation of electrolytes 74 3-3-4 Cell assembling 76 CHAPTER 4 79 4-1 Infusion Polymer gel electrolytes 79 4-1-1 Application of infusion PGEs under one sun condition 79 4-2 Optimization of electrolyte composition under indoor lighting conditions 86 4-2-1 Effect of blocking layer on device performance 87 4-2-2 Effect of solvent on device performance 88 4-2-3 Effect of Cu(I)/Cu(II) concentration on device performance 89 4-2-4 Effect of NMBI concentration on device performance 92 4-2-5 Effect of Cu(II) concentration on device performance 97 4-2-6 Performance under different light intensities 100 4-3 Printable polymer gel electrolyte 101 4-3-1 Effect of PEO concentration on device performance 102 4-3-2 Electrochemical characteristics and EIS analysis of the electrolytes 103 4-3-3 Effect of polymer blends on device performance 108 4-3-4 Electrochemical characteristics and EIS analysis of the polymer blend electrolytes 110 4-3-5 Device performances under different light intensities 113 CHAPTER 5 114 5-1 Conclusions 114 5-2 Recommendations 115 CHAPTER 6 REFERENCES 117

    [1] Gonçalves, L.M., V. de Zea Bermudez, H.A. Ribeiro, and A.M. Mendes."Dye-sensitized solar cells: A safe bet for the future", Energy & Environmental Science 1, p. 655-667, 2008.
    [2] Singh, B.P., S.K. Goyal, and P. Kumar."Solar PV cell materials and technologies: Analyzing the recent developments", Materials Today: Proceedings 43, p. 2843-2849, 2021.
    [3] Pastuszak, J. and P. Węgierek Photovoltaic Cell Generations and Current Research Directions for Their Development. Materials, 2022. 15, DOI: 10.3390/ma15165542.
    [4] Becquerel M, E."Memoire sur les Effets Electriques Produits sous l'Influence des Rayons Solaires", Comptes Rendus Hebdomadaires des Seances de L'Academie des Sciences 9, p. 561-567, 1839.
    [5] Chapin, D.M., C.S. Fuller, and G.L. Pearson."A new silicon p‐n junction photocell for converting solar radiation into electrical power", Journal of applied physics 25, p. 676-677, 1954.
    [6] Tyagi, V.V., N.A.A. Rahim, N.A. Rahim, and J.A.L. Selvaraj."Progress in solar PV technology: Research and achievement", Renewable and Sustainable Energy Reviews 20, p. 443-461, 2013.
    [7] Laboratory, N.R.E. Best Research-Cell Efficiency Chart. [cited 2023].
    [8] Tsubomura, H., M. Matsumura, Y. Nomura, and T. Amamiya."Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell", Nature 261, p. 402-403, 1976.
    [9] O'regan, B. and M. Grätzel."A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films", nature 353, p. 737-740, 1991.
    [10] Hardin, B.E., H.J. Snaith, and M.D. McGehee."The renaissance of dye-sensitized solar cells", Nature Photonics 6, p. 162-169, 2012.
    [11] Kakiage, K., Y. Aoyama, T. Yano, K. Oya, J.-i. Fujisawa, and M. Hanaya."Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes", Chemical Communications 51, p. 15894-15897, 2015.
    [12] Grätzel, M."Photoelectrochemical cells", nature 414, p. 338-344, 2001.
    [13] Grätzel, M."Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells", Journal of Photochemistry and Photobiology A: Chemistry 164, p. 3-14, 2004.
    [14] Grätzel, M."Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells", Inorganic Chemistry 44, p. 6841-6851, 2005.
    [15] Boschloo, G. and A. Hagfeldt."Characteristics of the Iodide/Triiodide Redox Mediator in Dye-Sensitized Solar Cells", Accounts of Chemical Research 42, p. 1819-1826, 2009.
    [16] Zhu, S., X. Liu, J. Lin, and X. Chen."Low temperature transferring of anodized TiO2 nanotube-array onto a flexible substrate for dye-sensitized solar cells", Optical Materials Express 5, p. 2754-2760, 2015.
    [17] Weerasinghe, H.C., P.M. Sirimanne, G.V. Franks, G.P. Simon, and Y.B. Cheng."Low temperature chemically sintered nano-crystalline TiO2 electrodes for flexible dye-sensitized solar cells", Journal of Photochemistry and Photobiology A: Chemistry 213, p. 30-36, 2010.
    [18] Weerasinghe, H.C., F. Huang, and Y.-B. Cheng."Fabrication of flexible dye sensitized solar cells on plastic substrates", Nano Energy 2, p. 174-189, 2013.
    [19] Park, N.G., J. van de Lagemaat, and A.J. Frank."Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells", The Journal of Physical Chemistry B 104, p. 8989-8994, 2000.
    [20] Bai, Y., I. Mora-Seró, F. De Angelis, J. Bisquert, and P. Wang."Titanium Dioxide Nanomaterials for Photovoltaic Applications", Chemical Reviews 114, p. 10095-10130, 2014.
    [21] Liu, X., J. Fang, Y. Liu, and T. Lin."Progress in nanostructured photoanodes for dye-sensitized solar cells", Frontiers of materials science 10, p. 225-237, 2016.
    [22] Cavallo, C., F. Di Pascasio, A. Latini, M. Bonomo, and D. Dini."Nanostructured Semiconductor Materials for Dye-Sensitized Solar Cells", Journal of Nanomaterials 2017, p. 5323164, 2017.
    [23] Liao, J.-Y., J.-W. He, H. Xu, D.-B. Kuang, and C.-Y. Su."Effect of TiO2 morphology on photovoltaic performance of dye-sensitized solar cells: nanoparticles, nanofibers, hierarchical spheres and ellipsoid spheres", Journal of Materials Chemistry 22, p. 7910-7918, 2012.
    [24] Shalini, S., R. Balasundaraprabhu, T.S. Kumar, N. Prabavathy, S. Senthilarasu, and S. Prasanna."Status and outlook of sensitizers/dyes used in dye sensitized solar cells (DSSC): a review", International journal of energy research 40, p. 1303-1320, 2016.
    [25] Hagfeldt, A., G. Boschloo, L. Sun, L. Kloo, and H. Pettersson."Dye-Sensitized Solar Cells", Chemical Reviews 110, p. 6595-6663, 2010.
    [26] Thavasi, V., V. Renugopalakrishnan, R. Jose, and S. Ramakrishna."Controlled electron injection and transport at materials interfaces in dye sensitized solar cells", Materials Science and Engineering: R: Reports 63, p. 81-99, 2009.
    [27] Ji, J.-M., H. Zhou, and H.K. Kim."Rational design criteria for D–π–A structured organic and porphyrin sensitizers for highly efficient dye-sensitized solar cells", Journal of Materials Chemistry A 6, p. 14518-14545, 2018.
    [28] Koumura, N., Z.-S. Wang, S. Mori, M. Miyashita, E. Suzuki, and K. Hara."Alkyl-Functionalized Organic Dyes for Efficient Molecular Photovoltaics", Journal of the American Chemical Society 128, p. 14256-14257, 2006.
    [29] Manthou, V.S., E.K. Pefkianakis, P. Falaras, and G.C. Vougioukalakis."Co‐Adsorbents: A Key Component in Efficient and Robust Dye‐Sensitized Solar Cells", ChemSusChem 8, p. 588-599, 2015.
    [30] Nazeeruddin, M.K., A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, and M. Grätzel."Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes", Journal of the American Chemical Society 115, p. 6382-6390, 1993.
    [31] Nazeeruddin, M.K., P. Pechy, and M. Grätzel."Efficient panchromatic sensitization of nanocrystalline TiO 2 films by a black dye based on a trithiocyanato–ruthenium complex", Chemical Communications, p. 1705-1706, 1997.
    [32] Nazeeruddin, M.K., F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel."Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers", Journal of the American Chemical Society 127, p. 16835-16847, 2005.
    [33] Wang, P., C. Klein, R. Humphry-Baker, S.M. Zakeeruddin, and M. Grätzel."A High Molar Extinction Coefficient Sensitizer for Stable Dye-Sensitized Solar Cells", Journal of the American Chemical Society 127, p. 808-809, 2005.
    [34] Chen, C.-Y., M. Wang, J.-Y. Li, N. Pootrakulchote, L. Alibabaei, C.-h. Ngoc-le, J.-D. Decoppet, J.-H. Tsai, C. Grätzel, C.-G. Wu, S.M. Zakeeruddin, and M. Grätzel."Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells", ACS Nano 3, p. 3103-3109, 2009.
    [35] Yu, Q., Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang, and P. Wang."High-Efficiency Dye-Sensitized Solar Cells: The Influence of Lithium Ions on Exciton Dissociation, Charge Recombination, and Surface States", ACS Nano 4, p. 6032-6038, 2010.
    [36] Li, L.-L. and E.W.-G. Diau."Porphyrin-sensitized solar cells", Chemical society reviews 42, p. 291-304, 2013.
    [37] Higashino, T. and H. Imahori."Porphyrins as excellent dyes for dye-sensitized solar cells: recent developments and insights", Dalton Transactions 44, p. 448-463, 2015.
    [38] Birel, Ö., S. Nadeem, and H. Duman."Porphyrin-based dye-sensitized solar cells (DSSCs): a review", Journal of fluorescence 27, p. 1075-1085, 2017.
    [39] Bessho, T., S.M. Zakeeruddin, C.Y. Yeh, E.W.G. Diau, and M. Grätzel."Highly efficient mesoscopic dye‐sensitized solar cells based on donor–acceptor‐substituted porphyrins", Angewandte Chemie International Edition 49, p. 6646-6649, 2010.
    [40] Yella, A., H.-W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.-G. Diau, C.-Y. Yeh, S.M. Zakeeruddin, and M. Grätzel."Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency", science 334, p. 629-634, 2011.
    [41] Mathew, S., A. Yella, P. Gao, R. Humphry-Baker, B.F. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, and M. Grätzel."Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers", Nature chemistry 6, p. 242-247, 2014.
    [42] Sharifi, N., F. Tajabadi, and N. Taghavinia."Recent Developments in Dye‐Sensitized Solar Cells", ChemPhysChem 15, p. 3902-3927, 2014.
    [43] Ito, S., S.M. Zakeeruddin, R. Humphry‐Baker, P. Liska, R. Charvet, P. Comte, M.K. Nazeeruddin, P. Péchy, M. Takata, and H. Miura."High‐efficiency organic‐dye‐sensitized solar cells controlled by nanocrystalline‐TiO2 electrode thickness", Advanced Materials 18, p. 1202-1205, 2006.
    [44] Ito, S., H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, P. Comte, P. Péchy, and M. Grätzel."High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye", Chemical Communications, p. 5194-5196, 2008.
    [45] Zhang, G., H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu, and P. Wang."High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary π-conjugated spacer", Chemical Communications, p. 2198-2200, 2009.
    [46] Zeng, W., Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan, and P. Wang."Efficient dye-sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks", Chemistry of Materials 22, p. 1915-1925, 2010.
    [47] Ludin, N.A., A.A.-A. Mahmoud, A.B. Mohamad, A.A.H. Kadhum, K. Sopian, and N.S.A. Karim."Review on the development of natural dye photosensitizer for dye-sensitized solar cells", Renewable and Sustainable Energy Reviews 31, p. 386-396, 2014.
    [48] Hug, H., M. Bader, P. Mair, and T. Glatzel."Biophotovoltaics: natural pigments in dye-sensitized solar cells", Applied Energy 115, p. 216-225, 2014.
    [49] Hao, S., J. Wu, Y. Huang, and J. Lin."Natural dyes as photosensitizers for dye-sensitized solar cell", Solar Energy 80, p. 209-214, 2006.
    [50] Narayan, M.R."Dye sensitized solar cells based on natural photosensitizers", Renewable and sustainable energy reviews 16, p. 208-215, 2012.
    [51] Wolfbauer, G., A.M. Bond, J.C. Eklund, and D.R. MacFarlane."A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells", Solar Energy Materials and Solar Cells 70, p. 85-101, 2001.
    [52] Nakade, S., T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida."Role of Electrolytes on Charge Recombination in Dye-Sensitized TiO2 Solar Cell (1):  The Case of Solar Cells Using the I-/I3- Redox Couple", The Journal of Physical Chemistry B 109, p. 3480-3487, 2005.
    [53] Harikisun, R. and H. Desilvestro."Long-term stability of dye solar cells", Solar Energy 85, p. 1179-1188, 2011.
    [54] Balraju, P., P. Suresh, M. Kumar, M. Roy, and G. Sharma."Effect of counter electrode, thickness and sintering temperature of TiO2 electrode and TBP addition in electrolyte on photovoltaic performance of dye sensitized solar cell using pyronine G (PYR) dye", Journal of Photochemistry and photobiology A: Chemistry 206, p. 53-63, 2009.
    [55] Stergiopoulos, T., E. Rozi, C.-S. Karagianni, and P. Falaras."Influence of electrolyte co-additives on the performance of dye-sensitized solar cells", Nanoscale research letters 6, p. 1-7, 2011.
    [56] Lee, K.-M., V. Suryanarayanan, and K.-C. Ho."Influences of different TiO2 morphologies and solvents on the photovoltaic performance of dye-sensitized solar cells", Journal of Power Sources 188, p. 635-641, 2009.
    [57] Fukui, A., R. Komiya, R. Yamanaka, A. Islam, and L. Han."Effect of a redox electrolyte in mixed solvents on the photovoltaic performance of a dye-sensitized solar cell", Solar Energy Materials and Solar Cells 90, p. 649-658, 2006.
    [58] Wu, J., Z. Lan, J. Lin, M. Huang, and P. Li."Effect of solvents in liquid electrolyte on the photovoltaic performance of dye-sensitized solar cells", Journal of Power Sources 173, p. 585-591, 2007.
    [59] Hamann, T.W."The end of iodide? Cobalt complex redox shuttles in DSSCs", Dalton Transactions 41, p. 3111-3115, 2012.
    [60] Feldt, S.M., G. Wang, G. Boschloo, and A. Hagfeldt."Effects of Driving Forces for Recombination and Regeneration on the Photovoltaic Performance of Dye-Sensitized Solar Cells using Cobalt Polypyridine Redox Couples", The Journal of Physical Chemistry C 115, p. 21500-21507, 2011.
    [61] Giribabu, L., R. Bolligarla, and M. Panigrahi."Recent Advances of Cobalt (II/III) Redox Couples for Dye‐Sensitized Solar Cell Applications", The Chemical Record 15, p. 760-788, 2015.
    [62] Klahr, B.M. and T.W. Hamann."Performance Enhancement and Limitations of Cobalt Bipyridyl Redox Shuttles in Dye-Sensitized Solar Cells", The Journal of Physical Chemistry C 113, p. 14040-14045, 2009.
    [63] Yum, J.-H., T. Moehl, J. Yoon, A.K. Chandiran, F. Kessler, P. Gratia, and M. Grätzel."Toward Higher Photovoltage: Effect of Blocking Layer on Cobalt Bipyridine Pyrazole Complexes as Redox Shuttle for Dye-Sensitized Solar Cells", The Journal of Physical Chemistry C 118, p. 16799-16805, 2014.
    [64] Murakami, T.N., N. Koumura, M. Kimura, and S. Mori."Structural Effect of Donor in Organic Dye on Recombination in Dye-Sensitized Solar Cells with Cobalt Complex Electrolyte", Langmuir 30, p. 2274-2279, 2014.
    [65] Srivishnu, K., S. Prasanthkumar, and L. Giribabu."Cu (II/I) redox couples: Potential alternatives to traditional electrolytes for dye-sensitized solar cells", Materials Advances 2, p. 1229-1247, 2021.
    [66] Hattori, S., Y. Wada, S. Yanagida, and S. Fukuzumi."Blue Copper Model Complexes with Distorted Tetragonal Geometry Acting as Effective Electron-Transfer Mediators in Dye-Sensitized Solar Cells", Journal of the American Chemical Society 127, p. 9648-9654, 2005.
    [67] Bai, Y., Q. Yu, N. Cai, Y. Wang, M. Zhang, and P. Wang."High-efficiency organic dye-sensitized mesoscopic solar cells with a copper redox shuttle", Chemical Communications 47, p. 4376-4378, 2011.
    [68] Freitag, M., F. Giordano, W. Yang, M. Pazoki, Y. Hao, B. Zietz, M. Grätzel, A. Hagfeldt, and G. Boschloo."Copper Phenanthroline as a Fast and High-Performance Redox Mediator for Dye-Sensitized Solar Cells", The Journal of Physical Chemistry C 120, p. 9595-9603, 2016.
    [69] Cong, J., D. Kinschel, Q. Daniel, M. Safdari, E. Gabrielsson, H. Chen, P.H. Svensson, L. Sun, and L. Kloo."Bis (1, 1-bis (2-pyridyl) ethane) copper (I/II) as an efficient redox couple for liquid dye-sensitized solar cells", Journal of Materials Chemistry A 4, p. 14550-14554, 2016.
    [70] Saygili, Y., M. Söderberg, N. Pellet, F. Giordano, Y. Cao, A.B. Muñoz-García, S.M. Zakeeruddin, N. Vlachopoulos, M. Pavone, G. Boschloo, L. Kavan, J.-E. Moser, M. Grätzel, A. Hagfeldt, and M. Freitag."Copper Bipyridyl Redox Mediators for Dye-Sensitized Solar Cells with High Photovoltage", Journal of the American Chemical Society 138, p. 15087-15096, 2016.
    [71] Freitag, M., J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, J. Hua, S.M. Zakeeruddin, J.-E. Moser, and M. Grätzel."Dye-sensitized solar cells for efficient power generation under ambient lighting", Nature Photonics 11, p. 372-378, 2017.
    [72] Tanaka, E., H. Michaels, M. Freitag, and N. Robertson."Synergy of co-sensitizers in a copper bipyridyl redox system for efficient and cost-effective dye-sensitized solar cells in solar and ambient light", Journal of Materials Chemistry A 8, p. 1279-1287, 2020.
    [73] Jiang, H., Y. Ren, W. Zhang, Y. Wu, E.C. Socie, B.I. Carlsen, J.E. Moser, H. Tian, S.M. Zakeeruddin, and W.H. Zhu."Phenanthrene‐Fused‐Quinoxaline as a Key Building Block for Highly Efficient and Stable Sensitizers in Copper‐Electrolyte‐Based Dye‐Sensitized Solar Cells", Angewandte Chemie 132, p. 9410-9415, 2020.
    [74] Freitag, M., Q. Daniel, M. Pazoki, K. Sveinbjörnsson, J. Zhang, L. Sun, A. Hagfeldt, and G. Boschloo."High-efficiency dye-sensitized solar cells with molecular copper phenanthroline as solid hole conductor", Energy & Environmental Science 8, p. 2634-2637, 2015.
    [75] Cao, Y., Y. Saygili, A. Ummadisingu, J. Teuscher, J. Luo, N. Pellet, F. Giordano, S.M. Zakeeruddin, J.E. Moser, M. Freitag, A. Hagfeldt, and M. Grätzel."11% efficiency solid-state dye-sensitized solar cells with copper(II/I) hole transport materials", Nature Communications 8, p. 15390, 2017.
    [76] Lee, Y.-L., C.-L. Chen, L.-W. Chong, C.-H. Chen, Y.-F. Liu, and C.-F. Chi."A platinum counter electrode with high electrochemical activity and high transparency for dye-sensitized solar cells", Electrochemistry Communications 12, p. 1662-1665, 2010.
    [77] Li, L.-L., C.-W. Chang, H.-H. Wu, J.-W. Shiu, P.-T. Wu, and E.W.-G. Diau."Morphological control of platinum nanostructures for highly efficient dye-sensitized solar cells", Journal of Materials Chemistry 22, p. 6267-6273, 2012.
    [78] Olsen, E., G. Hagen, and S. Eric Lindquist."Dissolution of platinum in methoxy propionitrile containing LiI/I2", Solar Energy Materials and Solar Cells 63, p. 267-273, 2000.
    [79] Murakami, T.N., S. Ito, Q. Wang, M.K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Péchy, and M. Grätzel."Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes", Journal of The Electrochemical Society 153, p. A2255, 2006.
    [80] Huang, K.-C., Y.-C. Wang, R.-X. Dong, W.-C. Tsai, K.-W. Tsai, C.-C. Wang, Y.-H. Chen, R. Vittal, J.-J. Lin, and K.-C. Ho."A high performance dye-sensitized solar cell with a novel nanocomposite film of PtNP/MWCNT on the counter electrode", Journal of Materials Chemistry 20, p. 4067-4073, 2010.
    [81] Kavan, L., J.H. Yum, and M. Grätzel."Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets", Acs Nano 5, p. 165-172, 2011.
    [82] Li, Q., J. Wu, Q. Tang, Z. Lan, P. Li, J. Lin, and L. Fan."Application of microporous polyaniline counter electrode for dye-sensitized solar cells", Electrochemistry Communications 10, p. 1299-1302, 2008.
    [83] Bu, C., Q. Tai, Y. Liu, S. Guo, and X. Zhao."A transparent and stable polypyrrole counter electrode for dye-sensitized solar cell", Journal of Power Sources 221, p. 78-83, 2013.
    [84] Ellis, H., N. Vlachopoulos, L. Häggman, C. Perruchot, M. Jouini, G. Boschloo, and A. Hagfeldt."PEDOT counter electrodes for dye-sensitized solar cells prepared by aqueous micellar electrodeposition", Electrochimica Acta 107, p. 45-51, 2013.
    [85] Ahmad, S., T. Bessho, F. Kessler, E. Baranoff, J. Frey, C. Yi, M. Grätzel, and M.K. Nazeeruddin."A new generation of platinum and iodine free efficient dye-sensitized solar cells", Physical Chemistry Chemical Physics 14, p. 10631-10639, 2012.
    [86] Gilbert, J.M. and F. Balouchi."Comparison of energy harvesting systems for wireless sensor networks", International Journal of automation and computing 5, p. 334-347, 2008.
    [87] Mathews, I., P.J. King, F. Stafford, and R. Frizzell."Performance of III–V solar cells as indoor light energy harvesters", IEEE Journal of Photovoltaics 6, p. 230-235, 2015.
    [88] Chen, C.C., V.S. Nguyen, H.C. Chiu, Y.D. Chen, T.C. Wei, and C.Y. Yeh."Anthracene‐Bridged Sensitizers for Dye‐Sensitized Solar Cells with 37% Efficiency under Dim Light", Advanced Energy Materials 12, p. 2104051, 2022.
    [89] De Rossi, F., T. Pontecorvo, and T.M. Brown."Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting", Applied Energy 156, p. 413-422, 2015.
    [90] Tingare, Y."NS n. Vinh, HH Chou, YC Liu, YS Long, TC Wu, TC Wei and CY Yeh, Adv", Energy Mater 7, p. 1700032, 2017.
    [91] Tsai, M.-C., C.-L. Wang, C.-W. Chang, C.-W. Hsu, Y.-H. Hsiao, C.-L. Liu, C.-C. Wang, S.-Y. Lin, and C.-Y. Lin."A large, ultra-black, efficient and cost-effective dye-sensitized solar module approaching 12% overall efficiency under 1000 lux indoor light", Journal of Materials Chemistry A 6, p. 1995-2003, 2018.
    [92] Cao, Y., Y. Liu, S.M. Zakeeruddin, A. Hagfeldt, and M. Grätzel."Direct contact of selective charge extraction layers enables high-efficiency molecular photovoltaics", Joule 2, p. 1108-1117, 2018.
    [93] Michaels, H., M. Rinderle, R. Freitag, I. Benesperi, T. Edvinsson, R. Socher, A. Gagliardi, and M. Freitag."Dye-sensitized solar cells under ambient light powering machine learning: towards autonomous smart sensors for the internet of things", Chemical Science 11, p. 2895-2906, 2020.
    [94] Cao, F., G. Oskam, and P.C. Searson."A solid state, dye sensitized photoelectrochemical cell", The journal of physical chemistry 99, p. 17071-17073, 1995.
    [95] Kubo, W., K. Murakoshi, T. Kitamura, Y. Wada, K. Hanabusa, H. Shirai, and S. Yanagida."Fabrication of quasi-solid-state dye-sensitized TiO2 solar cells using low molecular weight gelators", Chemistry Letters 27, p. 1241-1242, 1998.
    [96] Kubo, W., T. Kitamura, K. Hanabusa, Y. Wada, and S. Yanagida."Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator", Chemical communications, p. 374-375, 2002.
    [97] Wang, C., L. Wang, Y. Shi, H. Zhang, and T. Ma."Printable electrolytes for highly efficient quasi-solid-state dye-sensitized solar cells", Electrochimica Acta 91, p. 302-306, 2013.
    [98] Seo, S.-J., H.-J. Cha, Y.S. Kang, and M.-S. Kang."Printable ternary component polymer-gel electrolytes for long-term stable dye-sensitized solar cells", Electrochimica Acta 145, p. 217-223, 2014.
    [99] Wei, T.-C., H.-H. Chen, Y.-H. Chang, and S.P. Feng."Hydrophobic electrolyte pastes for highly durable dye-sensitized solar cells", Journal of The Electrochemical Society 161, p. H214, 2014.
    [100] Venkatesan, S., S.-C. Su, W.-N. Hung, I.P. Liu, H. Teng, and Y.-L. Lee."Printable electrolytes based on polyacrylonitrile and gamma-butyrolactone for dye-sensitized solar cell application", Journal of Power Sources 298, p. 385-390, 2015.
    [101] Liu, I.-P., W.-N. Hung, H. Teng, S. Venkatesan, J.-C. Lin, and Y.-L. Lee."High-performance printable electrolytes for dye-sensitized solar cells", Journal of Materials Chemistry A 5, p. 9190-9197, 2017.
    [102] Venkatesan, S., I.-P. Liu, J.-C. Lin, M.-H. Tsai, H. Teng, and Y.-L. Lee."Highly efficient quasi-solid-state dye-sensitized solar cells using polyethylene oxide (PEO) and poly (methyl methacrylate)(PMMA)-based printable electrolytes", Journal of Materials Chemistry A 6, p. 10085-10094, 2018.
    [103] Venkatesan, S., I.P. Liu, C.-M. Tseng Shan, H. Teng, and Y.-L. Lee."Highly efficient indoor light quasi-solid-state dye sensitized solar cells using cobalt polyethylene oxide-based printable electrolytes", Chemical Engineering Journal 394, p. 124954, 2020.
    [104] Liu, I.P., Y.-Y. Chen, Y.-S. Cho, L.-W. Wang, C.-Y. Chien, and Y.-L. Lee."Double-layered printable electrolytes for highly efficient dye-sensitized solar cells", Journal of Power Sources 482, p. 228962, 2021.
    [105] Liu, I.P., Y.-S. Cho, H. Teng, and Y.-L. Lee."Quasi-solid-state dye-sensitized indoor photovoltaics with efficiencies exceeding 25%", Journal of Materials Chemistry A 8, p. 22423-22433, 2020.
    [106] Liu, I.P., W.-H. Lin, C.-M. Tseng-Shan, and Y.-L. Lee."Importance of Compact Blocking Layers to the Performance of Dye-Sensitized Solar Cells under Ambient Light Conditions", ACS Applied Materials & Interfaces 10, p. 38900-38905, 2018.
    [107] Fürer, S.O., R.A. Milhuisen, M.K. Kashif, S.R. Raga, S.S. Acharya, C. Forsyth, M. Liu, L. Frazer, N.W. Duffy, and C.A. Ohlin."The Performance‐Determining Role of Lewis Bases in Dye‐Sensitized Solar Cells Employing Copper‐Bisphenanthroline Redox Mediators", Advanced Energy Materials 10, p. 2002067, 2020.
    [108] Venkatesan, S. and Y.-L. Lee."Nanofillers in the electrolytes of dye-sensitized solar cells – A short review", Coordination Chemistry Reviews 353, p. 58-112, 2017.

    下載圖示 校內:2025-07-31公開
    校外:2025-07-31公開
    QR CODE