| 研究生: |
黃秉毅 Huang, Ping-Yi |
|---|---|
| 論文名稱: |
苯胺與鄰苯二胺共聚物固定酵素於葡萄糖/氧生物燃料電池之研究 Poly(aniline-co-o-phenylenediamine) for the immobilization of enzymes for the investigation of glucose/oxygen biofuel cell |
| 指導教授: |
許梅娟
Syu, Mei-Jywan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 葡萄糖氧化酵素 、鄰苯二胺 、苯胺 、酵素電極 、生物燃料電池 、漆氧化酵素 |
| 外文關鍵詞: | glucose oxidase, o-phenylenediamine, anilinie, enzyme electrode, biofuel cell, laccase |
| 相關次數: | 點閱:146 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本實驗中使用苯胺 (aniline) 與鄰苯二胺 (o-phenylenediamine) 共聚物固定葡萄糖氧化酵素 (glucose oxidase) 和漆氧化酵素 (laccase) 於碳紙上,分別當作陽極與陰極,因此形成苯胺與鄰苯二胺共聚合固定酵素 poly(aniline-co-o-PD) 的生物燃料電池系統。並搭配陽極媒介子 HQS (8-hydroxyquinoline-5-sulfonic acid)、陰極媒介子ABTS (2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) 來增加電池效能,而在電聚合過程中加入奈米碳管也能增加電池功率。
從 SEM 來觀測電極表面型態,可發現鄰苯二胺有效的增加高分子厚度,並用 FT-IR 光譜圖結果證實鄰苯二胺能夠修飾聚苯胺線性結構,形成有支鏈或網路狀的高分子結構。此外也使用電流時間法來尋找對酵素電極放電的最適化酸鹼度。
電池裝置使用鹽橋連接兩極間當成質子傳遞媒介,其電池功率以變電壓方式來量測,搭配溶液中的葡萄糖濃度為 10 mM。在電極製備中增加鄰苯二胺的濃度對於電池效能有明顯的提升,當使用 0.4 M 苯胺與0.2 M鄰苯二胺共聚合所製備的複合電池效能可達到在 0.26 V 時有13.76 W/cm2的最大功率輸出。隨後進一步討論奈米碳管、酵素濃度、聚合圈數對於電極製備的最適化條件,以及尋找最佳操作條件使電池擁有最佳功率。
Nafion 質子交換膜也被應用於連接陰陽兩極,當其擁有強制對流環境下,其最佳功率為 11.767 W/cm2 在 0.14 V。而電池在長時間操作下效能會逐漸降低,可能是因為酵素在長時間操作逐漸失活或是包覆的酵素脫落等因素所導致,因此未來研究必須維持長時間的電池功率和維持酵素的活性。
In our research, aniline and o-phenylenediamine (o-PD) was used as the monomer for electropolymerization of the immobilization material of glucose oxidase and laccase on carbon paper as the anode and cathode, respectively. Thus, the biofuel cell system was composed of the enzyme immobilized poly(aniline-co-o-PD). Addition of anodic redox mediator, HQS (8- hydroxyquinoline-5-sulfonic acid) and cathodic redox mediator ABTS (2,2’- azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) will draw a significant effect on the power output of biofuel cell. Carbon nanotube was used in electropolymerization also increase the power density.
Using SEM photos to observation the surface morphology of the enzyme electrode, we can discover the polymer films will increase by addition o-PD in electropolymerization. FT-IR spectrum will be able to prove that o-PD modified the longchain structure of polyanilne and become to side chain or network polymer structure. Additionally, using chronoamperometry method to find out the optimum pH for discharge of enzyme electrode
Salt bridge was applied to connect the both side of cells as proton medium. The power density with respect to different operating voltages with glucose concentration of 10 mM. Increasing o-PD concentration in electropolymerization can achieve enormous enhancement of power density. The composited cell made by 0.4 M aniline and 0.2 M o-PD has a maximum power density of 13.76 W/cm2 at 0.26 V. Further investigation of the optimum concentration of CNTs, enzyme, cycles in electropolymerztion and the optimum operation condition to obtain the maximum power output.
A Nafion proton exchange membrane was also inserted to separate both half cells. When system has a better convective flow environment for cell discharge, it has a maximum power density of 11.767 W/cm2 at 0.14 V. Finally, the power output of biofuel cell system in long-term operation will decreased, probably the activity of the enzyme decayed or damaged in cell operation or fell out of the enzymatic electrode. Therefore, further investigation is to maintain the maximum power density and enzyme activity in the long-term operation.
[1] 吳文昌,固態氧化物燃料電池用電解質材料之現況與未來,台灣化學工程學會化工期刊,2006 年 6 月,第53 卷,第 3 期,19~29。
[2] S.C. Barton, J. Gallaway, P. Atanassov, Enzymatic biofuel cells for implantable and microscale devices, Chem. Rev., 2004, 104, 4867-4886.
[3] R.A. Bullen, T.C. Amot, J.B. Lakeman, F.C. Walsh, Biofuel cells and their development, Biosensors and Bioelectronics, 2006, 21, 2015-2045.
[4] J. Kim, H. Jia, P. Wang, Challenges in biocatalysis for enzyme-based biofuel cells, Biotechnology Advance, 2006, 24, 296-303.
[5] K. Rabaey, W. Verstraete, Microbial fuel cells: novel biotechnology for energy generation, Trends in Biotechnology, 2005, 23, 291-298.
[6] G.C. Gil, I.S. Chang, B.H. Kim, M. Kim, J.K. Jang, H.S. Park, H.J. Kim, Operational parameters affecting the performance of a mediator-less microbial fuel cell, Biosensors and Bioelectronics, 2003, 18, 327-334.
[7] F. Davis, S.P.J. Higson, Biofuel cells – recent advances and applications, Biosensors and Bioelectronics, 2007, 22, 941-947.
[8] L. de la Garza, G. Jeong, P.A. Liddell, T. Sotomura, T.A. Moores, L. Moore, D. Gust, Enzyme-based photoelectrochemicel biofuel cell, J. Phys. Chem. B, 2003, 107, 10252-10260.
[9] N. Mano, F. Mao, A. Heller, Characteristics of a miniature compartment-less biofuel cell and its operation in a living plant, J. Am. Chem. Soc., 2003, 125, 6588-6594.
[10] A. Heller, Electrical connection of enzyme redox centers to electrodes, J. Phys. Chem. 1992, 96, 3579-3587.
[11] H.J. Hecht. H.M. Kaliaz, J. Hendle, R.D. Schmid, D. Schomburg, Crystal structure of glucose oxidase from Aspergillus niger refined at 2.3 A resolution, J. Mol. Biol., 1993, 229, 153-172.
[12] K. Piontek, M. Anotorini, T. Choionowski, Crystal structure of a Laccase from the Trametes versicolor at 1.9 A resolution containing a full complement of coppers, The Joural of Biological Chemistry, 2002, 277, 37663-37669.
[13] E.I. Solomon, U.M. Sundaram, T.E. Machonkin, Multicopper oxidases and oxygenases, Chem. Rev., 1996, 96, 2563-2605.
[14] S. Riva, Laccase : blue enzymes for green chemistry, Trends in Biotechnology, 2006, 24, 219-226.
[15] C.M. Moore, N.L. Akers, A.D. Hill, Z.C. Johnson, S.D. Minteer, Improving the environment for immobilized dehydrogenase enzymes by modifying Nafion with Tetraalkylammonium bromides, Biomacromolecules, 2004, 5, 1241-1247.
[16] W.H. Scouten, J.H.T. Luong, R.S. Brown, Enzyme or protein immobilization techniques for applications in biosensor design, Trends in Biotechnology, 1995, 103, 178-185.
[17] T. Ahuja, I.A.Mir.D. Kumar, Rajesh, Biomolucelur immobilization on conducting polymers for biosensing applocations, Biomaterials, 2007, 28, 791-805.
[18] P.N. Barlett, J.M. Cooper, A review of the immobilization of enzymes in electropolymerised film, J. Electroanal. Chem., 1993, 362, 1-12.
[19] B.D. Malhotra, A. Chaubey, S.P. Singh, Prospects of conducting polymers in biosensors, Analytica Chimica Acta, 2006, 578, 59-74.
[20] 江奇儒,聚吡咯奈米碳管複合材料固定酵素電極於葡萄糖/氧生物燃料電池之應用,國立成功大學,41-42,2007。
[21] M. Gerard, A. Chaubey, B.D. Malhotra, Application of conducting polymers to biosensors, Biosensors and Bioelectronics, 2002, 17, 345-359.
[22] B. Zinger, L.L. Miller, Time release of chemicals from polypyrrole films, J. Am. Chem. Soc., 1984, 106, 6861-6863.
[23] N.D. Dominique, P.E. Fabienne, Polyaniline as a new sensitive layer for gas sensors, Analytica Chimica Acta, 2003, 475, 1-15.
[24] M. Lee, Y. Luo, J. Do, Using PANI-PPDA/Au composite films as cathode of lithium secondary battery, J. Power Source, 2005, 146, 340-344
[25] R. Mazeikiene, A. Malinauskas, Electrochemical copolymerization of aniline with m-phenylenediamine, Synthetic Metals, 1998, 92, 259-263.
[26] J. Prokes, J. Stejskal, I. Keicka, E. Tobolkova, Aniline- phenylenediamine copolymers, Synthetic Metals, 1999, 102, 1205-1206.
[27] C. Xiang, Q. Xie, J. Hu, S. Yao, Studies on electrochemical copolymerization of aniline with o-phenylenediamine and degradation of the resultant copolymers via electrochemical quartz crystal microbalance and scanning electrochemical microscope, Synthetic Metals, 2006, 156, 444-453.
[28] W. Zheng, Q. Li, L. Su, Y. Yan, J. Zhang, L. Mao, Direct electrochemistry of multi-copper oxidases at carbon nanotubes noncovalently functionalized with cellulose derivatives, Electroanalysis, 2006, 18, 587-594.
[29] P.M. Ajayan, Nanotubes from carbon, Chem. Rev., 1999, 99, 1781-1799.
[30] C.N.R. Rao, B.C. Satishkumar, A. Govindaraj, M. Nath, Nanotubes, ChemPhysChem, 2001, 2, 78-105.
[31] S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, 1993, 363, 603-605
[32] R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubes – the route toward applications, Science, 297, 787-792.
[33] C.H. Olk, J.P. Heremans, Scanning tunneling spectroscopy of carbon nanotubes, J. Mater. Res., 1994, 2, 259-262.
[34] H.K. Song, E.J. Lee, M.O. Seung, Electrochromism of 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonate) incorporated into conducting polymer as a dopant, Chem. Mater., 2005, 17, 2232-2233.
[35] D.B. Naik, P. Dwibedy, G.R. Dey, K. Kishore, Redox reaction of 8-hydroxyquinoline, A pulse radiolysis study, J. Phys. Chem. A, 1998, 102, 684-688.
[36] H. Peng, C. Liang, A. Zhou, Y. Zhang, Q. Xie, S. Yao, Development of a new atropine sulfate bulk acoustic wave sensor based on a molecularly imprinted electrosynthesized copolymer of aniline with o-phenylenediamine, Analytica Chimica Acta, 2000, 423, 221-228.
[37] 汪定銘,定電流聚合導電性高分子法製備葡萄糖生物感測器之研究,國立成功大學,57- 58,2003。
[38] A. Hirsch, Functionalization of single-walled carbon nanotubes, Angew. Chem. Int. Ed., 2002, 41, 1853-1859.
[39] Y.W. Rho, S. Srinivasan, Y.T. Kho, Mass transport phenomena in proton exchange membrance fuel cells using O2/He, O2/Ar, and O2/N2 mixtures, J. Electrochem. Soc., 1994, 141, 2084-2089.