簡易檢索 / 詳目顯示

研究生: 黃秉毅
Huang, Ping-Yi
論文名稱: 苯胺與鄰苯二胺共聚物固定酵素於葡萄糖/氧生物燃料電池之研究
Poly(aniline-co-o-phenylenediamine) for the immobilization of enzymes for the investigation of glucose/oxygen biofuel cell
指導教授: 許梅娟
Syu, Mei-Jywan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 81
中文關鍵詞: 葡萄糖氧化酵素鄰苯二胺苯胺酵素電極生物燃料電池漆氧化酵素
外文關鍵詞: glucose oxidase, o-phenylenediamine, anilinie, enzyme electrode, biofuel cell, laccase
相關次數: 點閱:146下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本實驗中使用苯胺 (aniline) 與鄰苯二胺 (o-phenylenediamine) 共聚物固定葡萄糖氧化酵素 (glucose oxidase) 和漆氧化酵素 (laccase) 於碳紙上,分別當作陽極與陰極,因此形成苯胺與鄰苯二胺共聚合固定酵素 poly(aniline-co-o-PD) 的生物燃料電池系統。並搭配陽極媒介子 HQS (8-hydroxyquinoline-5-sulfonic acid)、陰極媒介子ABTS (2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) 來增加電池效能,而在電聚合過程中加入奈米碳管也能增加電池功率。
    從 SEM 來觀測電極表面型態,可發現鄰苯二胺有效的增加高分子厚度,並用 FT-IR 光譜圖結果證實鄰苯二胺能夠修飾聚苯胺線性結構,形成有支鏈或網路狀的高分子結構。此外也使用電流時間法來尋找對酵素電極放電的最適化酸鹼度。
    電池裝置使用鹽橋連接兩極間當成質子傳遞媒介,其電池功率以變電壓方式來量測,搭配溶液中的葡萄糖濃度為 10 mM。在電極製備中增加鄰苯二胺的濃度對於電池效能有明顯的提升,當使用 0.4 M 苯胺與0.2 M鄰苯二胺共聚合所製備的複合電池效能可達到在 0.26 V 時有13.76 W/cm2的最大功率輸出。隨後進一步討論奈米碳管、酵素濃度、聚合圈數對於電極製備的最適化條件,以及尋找最佳操作條件使電池擁有最佳功率。
    Nafion 質子交換膜也被應用於連接陰陽兩極,當其擁有強制對流環境下,其最佳功率為 11.767 W/cm2 在 0.14 V。而電池在長時間操作下效能會逐漸降低,可能是因為酵素在長時間操作逐漸失活或是包覆的酵素脫落等因素所導致,因此未來研究必須維持長時間的電池功率和維持酵素的活性。

    In our research, aniline and o-phenylenediamine (o-PD) was used as the monomer for electropolymerization of the immobilization material of glucose oxidase and laccase on carbon paper as the anode and cathode, respectively. Thus, the biofuel cell system was composed of the enzyme immobilized poly(aniline-co-o-PD). Addition of anodic redox mediator, HQS (8- hydroxyquinoline-5-sulfonic acid) and cathodic redox mediator ABTS (2,2’- azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) will draw a significant effect on the power output of biofuel cell. Carbon nanotube was used in electropolymerization also increase the power density.
    Using SEM photos to observation the surface morphology of the enzyme electrode, we can discover the polymer films will increase by addition o-PD in electropolymerization. FT-IR spectrum will be able to prove that o-PD modified the longchain structure of polyanilne and become to side chain or network polymer structure. Additionally, using chronoamperometry method to find out the optimum pH for discharge of enzyme electrode
    Salt bridge was applied to connect the both side of cells as proton medium. The power density with respect to different operating voltages with glucose concentration of 10 mM. Increasing o-PD concentration in electropolymerization can achieve enormous enhancement of power density. The composited cell made by 0.4 M aniline and 0.2 M o-PD has a maximum power density of 13.76 W/cm2 at 0.26 V. Further investigation of the optimum concentration of CNTs, enzyme, cycles in electropolymerztion and the optimum operation condition to obtain the maximum power output.
    A Nafion proton exchange membrane was also inserted to separate both half cells. When system has a better convective flow environment for cell discharge, it has a maximum power density of 11.767 W/cm2 at 0.14 V. Finally, the power output of biofuel cell system in long-term operation will decreased, probably the activity of the enzyme decayed or damaged in cell operation or fell out of the enzymatic electrode. Therefore, further investigation is to maintain the maximum power density and enzyme activity in the long-term operation.

    中文摘要…………………………………………………………………I Abstact…………………………………………………………………II 致謝……………………………………………………………………III 目錄…………………………………………………………………IV 表格目錄………………………………………………………………VII 圖形目錄……………………………………………………………VIII 第一章 緒論……………………………………………………………1 1.1生物燃料電池 (biofuel cell)……………………………………1 1.1.1 生物燃料電池的起源……………………………………………2 1.1.2 生物燃料電池的特性……………………………………………2 1.1.3 生物燃料電池的種類……………………………………………2 1.1.4 生物燃料電池的應用層面………………………………………4 1.2 生物燃料電池的電極反應…………………………………………5 1.2.1 酵素電極的電化學性質…………………………………………5 1.2.2 電子傳遞機制 (electron transfer mechanism)……………5 1.3 酵素型生物燃料電池所使用的酵素………………………………8 1.3.1 葡萄糖氧化酵素 (glucose oxidase, -D-glucose : oxygen 1-oxidoreductase) …………………………………………8 1.3.2 漆氧化酵素 (laccase, p-diphenol : dioxygen oxidoreductase)…………………………………………10 1.4 酵素固定法 (enzyme immobilization)………………………12 1.4.1 物理吸附法 (physical adsorption)………………………12 1.4.2 包埋法 (entrapment)…………………………………………12 1.4.3 交聯法 (cross-linking)……………………………………13 1.4.4 共價鍵法 (covalent binding)………………………………13 1.4.5 電化學聚合法 (electrochemical immobilization)………13 1.5 導電性高分子 (conducting polymer)…………………………14 1.5.1 導電性高分子的起源與性質…………………………………14 1.5.2 聚苯胺的聚合機制及其特性…………………………………15 1.5.3 苯胺與鄰苯二胺形成共聚合高分子的原理…………………16 1.6 奈米在生物燃料電池的應用……………………………………17 1.6.1 奈米碳管的起源與性質………………………………………18 1.6.2 奈米碳管的結構………………………………………………18 1.6.3 奈米碳管的應用………………………………………………19 1.7 葡萄糖/氧氣生物燃料電池 (glucose/O2 biofuel cell)……20 1.7.1 酵素與媒介子在陰陽兩極的反應……………………………20 1.7.2 電池所產生的開環電位………………………………………20 1.8 研究動機…………………………………………………………21 第二章 實驗方法、材料與儀器………………………………………22 2.1 實驗藥品前處理…………………………………………………22 2.1.1 多壁奈米碳管酸化處理………………………………………22 2.2 酵素電極製備方式………………………………………………22 2.2.1 鋪上多壁奈米碳管的碳紙電極製備步驟……………………22 2.2.2 葡萄糖氧化電極製備步驟……………………………………22 2.2.3 氧氣還原電極製備步驟………………………………………23 2.3 單一酵素電極檢測方式…………………………………………24 2.3.1 以電流時間法 (chronoamperometry) 檢測單一酵素電極…24 2.3.2 使用高效能場放射型掃描式電子顯微鏡 (HR-FESEM) 觀察酵素電極表面形態………………………………………………………25 2.3.3 以傅立葉紅外線光譜儀 (FT-IR) 分析酵素電極固定材料…25 2.4 酵素型生物燃料電池放電測試…………………………………26 2.4.1 使用鹽橋系統當質子交換媒介的電池組裝…………………26 2.4.2 使用Nafion 薄膜當質子交換媒介的電池組裝……………26 2.4.3 電池的極化曲線 (polarization curve) 與功率對電壓曲線 (power-voltage curve)………………………………………………26 2.5 實驗藥品與材料…………………………………………………28 2.6 實驗儀器…………………………………………………………29 第三章 實驗結果與討論……………………………………………30 3.1 酵素電極製備……………………………………………………30 3.1.1使用苯胺 (aniline) 和鄰二苯胺 (o-PD) 以電化學共聚合之電極製備………………………………………………………………30 3.1.2 在固定苯胺濃度下改變鄰苯二胺對電極製備的影響………31 3.1.3改變電聚合溶液中奈米碳管濃度對陽極酵素電極製備的影響………………………………………………………………………33 3.1.4 改變電聚合循環伏安圈數對陽極酵素電極製備的影響……33 3.1.5 改變電聚合酵素濃度對電極製備的影響……………………33 3.2 酵素電極之性質測定……………………………………………34 3.2.1 以 FT-IR 檢視酵素電極固定化材料…………………………34 3.2.2 以 SEM 觀察固定化酵素電極表面型態………………………35 3.3 酵素電極的電化學檢測……………………………………40 3.3.1 以時間電流法檢測陽極酵素電極……………………………40 3.4 以鹽橋當成陰陽兩極分隔之生物燃料電池效能分析……41 3.4.1 生物燃料電池操作以及功率-電壓曲線、極化曲線…………41 3.4.2 使用苯胺和對二苯胺共聚物固定酵素對電池效能的影響…46 3.4.3 奈米碳管對電池效能的加乘效果……………………………49 3.4.4 使用不同奈米碳管濃度製備電極對電池效能的影響………53 3.4.5 使用不同循環伏安圈數製備電極對電池效能的影響………55 3.4.6 使用不同酵素濃度製備電極對電池效能的影響……………57 3.4.7 改變電極面積與聚合液體積對電池效能的影響……………59 3.4.8 改變電壓更換時間以及變電壓方式對電池效能的影響……61 3.4.9 不同操作溫度對電池效能的影響……………………………65 3.4.10 正反向操作以及電池重複使用之探討………………………67 3.4.11 酵素型燃料電池效能再現性…………………………………70 3.5以 Nafion 薄膜當質子交換媒介的電池裝置……………………72 3.5.1 Nafion 薄膜與鹽橋系統之電池效能差別……………………72 第四章 結論……………………………………………………………75 參考文獻………………………………………………………………78

    [1] 吳文昌,固態氧化物燃料電池用電解質材料之現況與未來,台灣化學工程學會化工期刊,2006 年 6 月,第53 卷,第 3 期,19~29。
    [2] S.C. Barton, J. Gallaway, P. Atanassov, Enzymatic biofuel cells for implantable and microscale devices, Chem. Rev., 2004, 104, 4867-4886.
    [3] R.A. Bullen, T.C. Amot, J.B. Lakeman, F.C. Walsh, Biofuel cells and their development, Biosensors and Bioelectronics, 2006, 21, 2015-2045.
    [4] J. Kim, H. Jia, P. Wang, Challenges in biocatalysis for enzyme-based biofuel cells, Biotechnology Advance, 2006, 24, 296-303.
    [5] K. Rabaey, W. Verstraete, Microbial fuel cells: novel biotechnology for energy generation, Trends in Biotechnology, 2005, 23, 291-298.
    [6] G.C. Gil, I.S. Chang, B.H. Kim, M. Kim, J.K. Jang, H.S. Park, H.J. Kim, Operational parameters affecting the performance of a mediator-less microbial fuel cell, Biosensors and Bioelectronics, 2003, 18, 327-334.
    [7] F. Davis, S.P.J. Higson, Biofuel cells – recent advances and applications, Biosensors and Bioelectronics, 2007, 22, 941-947.
    [8] L. de la Garza, G. Jeong, P.A. Liddell, T. Sotomura, T.A. Moores, L. Moore, D. Gust, Enzyme-based photoelectrochemicel biofuel cell, J. Phys. Chem. B, 2003, 107, 10252-10260.
    [9] N. Mano, F. Mao, A. Heller, Characteristics of a miniature compartment-less biofuel cell and its operation in a living plant, J. Am. Chem. Soc., 2003, 125, 6588-6594.
    [10] A. Heller, Electrical connection of enzyme redox centers to electrodes, J. Phys. Chem. 1992, 96, 3579-3587.
    [11] H.J. Hecht. H.M. Kaliaz, J. Hendle, R.D. Schmid, D. Schomburg, Crystal structure of glucose oxidase from Aspergillus niger refined at 2.3 A resolution, J. Mol. Biol., 1993, 229, 153-172.
    [12] K. Piontek, M. Anotorini, T. Choionowski, Crystal structure of a Laccase from the Trametes versicolor at 1.9 A resolution containing a full complement of coppers, The Joural of Biological Chemistry, 2002, 277, 37663-37669.
    [13] E.I. Solomon, U.M. Sundaram, T.E. Machonkin, Multicopper oxidases and oxygenases, Chem. Rev., 1996, 96, 2563-2605.
    [14] S. Riva, Laccase : blue enzymes for green chemistry, Trends in Biotechnology, 2006, 24, 219-226.
    [15] C.M. Moore, N.L. Akers, A.D. Hill, Z.C. Johnson, S.D. Minteer, Improving the environment for immobilized dehydrogenase enzymes by modifying Nafion with Tetraalkylammonium bromides, Biomacromolecules, 2004, 5, 1241-1247.
    [16] W.H. Scouten, J.H.T. Luong, R.S. Brown, Enzyme or protein immobilization techniques for applications in biosensor design, Trends in Biotechnology, 1995, 103, 178-185.
    [17] T. Ahuja, I.A.Mir.D. Kumar, Rajesh, Biomolucelur immobilization on conducting polymers for biosensing applocations, Biomaterials, 2007, 28, 791-805.
    [18] P.N. Barlett, J.M. Cooper, A review of the immobilization of enzymes in electropolymerised film, J. Electroanal. Chem., 1993, 362, 1-12.
    [19] B.D. Malhotra, A. Chaubey, S.P. Singh, Prospects of conducting polymers in biosensors, Analytica Chimica Acta, 2006, 578, 59-74.
    [20] 江奇儒,聚吡咯奈米碳管複合材料固定酵素電極於葡萄糖/氧生物燃料電池之應用,國立成功大學,41-42,2007。
    [21] M. Gerard, A. Chaubey, B.D. Malhotra, Application of conducting polymers to biosensors, Biosensors and Bioelectronics, 2002, 17, 345-359.
    [22] B. Zinger, L.L. Miller, Time release of chemicals from polypyrrole films, J. Am. Chem. Soc., 1984, 106, 6861-6863.
    [23] N.D. Dominique, P.E. Fabienne, Polyaniline as a new sensitive layer for gas sensors, Analytica Chimica Acta, 2003, 475, 1-15.
    [24] M. Lee, Y. Luo, J. Do, Using PANI-PPDA/Au composite films as cathode of lithium secondary battery, J. Power Source, 2005, 146, 340-344
    [25] R. Mazeikiene, A. Malinauskas, Electrochemical copolymerization of aniline with m-phenylenediamine, Synthetic Metals, 1998, 92, 259-263.
    [26] J. Prokes, J. Stejskal, I. Keicka, E. Tobolkova, Aniline- phenylenediamine copolymers, Synthetic Metals, 1999, 102, 1205-1206.
    [27] C. Xiang, Q. Xie, J. Hu, S. Yao, Studies on electrochemical copolymerization of aniline with o-phenylenediamine and degradation of the resultant copolymers via electrochemical quartz crystal microbalance and scanning electrochemical microscope, Synthetic Metals, 2006, 156, 444-453.
    [28] W. Zheng, Q. Li, L. Su, Y. Yan, J. Zhang, L. Mao, Direct electrochemistry of multi-copper oxidases at carbon nanotubes noncovalently functionalized with cellulose derivatives, Electroanalysis, 2006, 18, 587-594.
    [29] P.M. Ajayan, Nanotubes from carbon, Chem. Rev., 1999, 99, 1781-1799.
    [30] C.N.R. Rao, B.C. Satishkumar, A. Govindaraj, M. Nath, Nanotubes, ChemPhysChem, 2001, 2, 78-105.
    [31] S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, 1993, 363, 603-605
    [32] R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubes – the route toward applications, Science, 297, 787-792.
    [33] C.H. Olk, J.P. Heremans, Scanning tunneling spectroscopy of carbon nanotubes, J. Mater. Res., 1994, 2, 259-262.
    [34] H.K. Song, E.J. Lee, M.O. Seung, Electrochromism of 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonate) incorporated into conducting polymer as a dopant, Chem. Mater., 2005, 17, 2232-2233.
    [35] D.B. Naik, P. Dwibedy, G.R. Dey, K. Kishore, Redox reaction of 8-hydroxyquinoline, A pulse radiolysis study, J. Phys. Chem. A, 1998, 102, 684-688.
    [36] H. Peng, C. Liang, A. Zhou, Y. Zhang, Q. Xie, S. Yao, Development of a new atropine sulfate bulk acoustic wave sensor based on a molecularly imprinted electrosynthesized copolymer of aniline with o-phenylenediamine, Analytica Chimica Acta, 2000, 423, 221-228.
    [37] 汪定銘,定電流聚合導電性高分子法製備葡萄糖生物感測器之研究,國立成功大學,57- 58,2003。
    [38] A. Hirsch, Functionalization of single-walled carbon nanotubes, Angew. Chem. Int. Ed., 2002, 41, 1853-1859.
    [39] Y.W. Rho, S. Srinivasan, Y.T. Kho, Mass transport phenomena in proton exchange membrance fuel cells using O2/He, O2/Ar, and O2/N2 mixtures, J. Electrochem. Soc., 1994, 141, 2084-2089.

    下載圖示 校內:立即公開
    校外:2008-06-23公開
    QR CODE