簡易檢索 / 詳目顯示

研究生: 潘美秀
Pan, Mei-Hsiu
論文名稱: 疊代學習模式預測控制之設計與其在批次製程應用之探討
Designs of Iterative Learning Model Predictive Control and Studies on Their Applications in Batch Processes
指導教授: 黃世宏
Hwang, Shyh-Hong
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 103
中文關鍵詞: 模式預測控制二次動態矩陣控制疊代學習控制受限最佳控制批次製程
外文關鍵詞: Model predictive control, quadratic dynamic matrix control, iterative learning control, constrained optimal control, batch process
相關次數: 點閱:103下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 模式預測控制不僅適用於製程之多變數最佳控制,且能針對操作或被控變數依實際需求設限。疊代學習控制適用於具重複操作特性之控制系統,能逐步消除模式不確定性和重複性擾動對製程的影響。目前已有學者提出兩種疊代學習模式預測控制,分別使用動態矩陣控制與狀態空間模式預測控制,可用來改善批次製程之控制性能,其缺點為僅以輸出誤差來評估改善效果,且未完整探討變數設限與時延的問題。
    本文首先比較二次動態矩陣控制與傳統數位控制,證實前者針對SISO和MIMO系統皆能獲得較佳的控制,但也發現在製程含未知擾動或模式不吻合時,其控制性能仍具改善空間。針對批次製程對受限多變數最佳控制的需求,本文提出疊代學習二次動態矩陣控制(ILQDMC),能夠逐批改善製程的控制性能,其改善標準為在含特定輸出入加權的目標函數不變差的情況下,輸出誤差平方和持續變好。ILQDMC提供第一步設限和全部設限兩種操作變數設限方式,且所使用的設計公式極適合疊代學習計算。與疊代學習狀態空間模式預測控制(ILSSMPC)的比較發現,當模式相同且不含時延時,ILSSMPC之控制性能一般優於ILQDMC;當模式含時延或不易取得時,建議採用ILQDMC。模擬研究顯示,第一步設限方式適合輸入權重設定值較小的SISO系統;而全部設限方式適合MIMO系統。此外,在輸入權重值不變時,疊代學習控制無法保證控制性能長久持續改善,因此當改善效果變差時,可藉由增加權重值來停止疊代學習,以維持原有的良好控制。

    Iterative learning control is suited to a control system characterized by repetitive operation. It can gradually eliminate the influence caused by model uncertainty and repetitive disturbances. Some approaches of iterative learning model predictive control have been proposed to improve the control performance of a batch process. The shortcomings are that they evaluated the improvement only by virtue of the output errors and did not thoroughly investigate the problems of variable constraints and time delay.
    In this thesis, quadratic dynamic matrix control is first compared with the traditional digital control to find that the former is better for both SISO and MIMO systems. However, it is also found that there is still room for further improvement if model mismatch or unknown disturbances exist in the process. Therefore, a method called iterative learning quadratic dynamic matrix control (ILQDMC) is proposed to provide constrained multivariable optimal control required by batch processes. ILQDMC can improve the control performance batch by batch in the sense that the sum of squared output errors gets better without sacrificing the objective function formed by weighted outputs and inputs. ILQDMC offers two ways to constrain manipulated variables, i.e., first step constraint and all steps constraint. The design formula are quite suitable for the computation of iterative learning. A comparison with iterative learning state-space model predictive control (ILSSMPC) reveals the following: the performance of ILSSMPC is generally better when employing the same model without time delay; ILQDMC should be adopted when the model possesses time delay or is hard to obtain. Simulation studies indicate that first step constraint is suited to SISO systems with smaller input weights, while all steps constraint works for MIMO systems. In addition, to maintain good control batch by batch, the input weight should be increased to stop iterative learning as the performance begins to become worse.

    摘要 I Abstract II 誌謝 XI 目錄 XII 表目錄 XIV 圖目錄 XV 符號表 XVII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 1.3 章節與組織 4 第二章 理論回顧 5 2.1 動態矩陣控制理論 5 2.1.1 離散摺積模式 5 2.1.2 動態矩陣控制(DMC) 6 2.1.3 二次動態矩陣控制(QDMC) 11 2.2 疊代學習模式預測控制理論 15 2.2.1 疊代學習控制(ILC) 15 2.2.2 二維動態矩陣控制(2D-DMC) 16 2.2.3 疊代學習狀態空間模式預測控制(ILSSMPC) 16 第三章 動態矩陣控制器之模擬 20 3.1 調整目標函數權重對控制系統之影響 20 3.2 二次動態矩陣控制器與數位控制器之比較 23 第四章 疊代學習模式預測控制器之設計 33 4.1 ILQDMC設計公式推導 33 4.2 操作變數全部設限與第一步設限之控制器設計 35 4.3 含時延系統之控制器設計 36 第五章 疊代學習模式預測控制之模擬研究 38 5.1 調整目標函數權重對控制系統之影響 38 5.2 操作變數全部設限與第一步設限之模擬 42 5.2.1 模式正確且系統無擾動 42 5.2.2 模式正確且系統含未知擾動 50 5.2.3 模式不吻合且系統含未知擾動 64 5.3 含時延系統之模擬 75 第六章 結論與未來展望 94 6.1 結論 94 6.2 未來展望 95 參考文獻 96 附錄一 99 附錄二 101 附錄三 102 附錄四 103

    Ahn, H. S., Chen, Y. Q., and Moore, K. L., “Iterative Learning Control: Brief Survey and Categorization,” IEEE Trans. Syst. Man Cybern. Part C-Appl. Rev., 37, 1099-1121, 2007.
    Arimoto, S., Kawamura, S., and Miyazaki, F., “Bettering Operation of Robots by Learning,” J. Robotic Syst., 1, 123-140, 1984.
    Camponogara, E., Jia, D., Krogh, B. H., and Talukdar, S., “Distributed Model Predictive Control,” IEEE Contr. Syst., 22, 44-52, 2002.
    Clarke, D. W., Mohtadi, C., and Tuffs, P. S., “Generalized Predictive Control Algorithm – Part I. The Basic Algorithm,” IFAC Automat., 23, 137-148, 1987.
    Christofides, P. D., Scattolini, R., Muñoz de la Peña, D., and Liu, J., “Distributed Model Predictive Control: A Tutorial Review and Future Research Directions,” Comput. Chem. Eng., 51, 21-41, 2013.
    Culter, C. R. and Ramaker, B. L., “Dynamic Matrix Control – A Computer Control Algorithm,” Proc. J. Automat. Contr. Conf., Wp5-B, 1-6, 1980.
    Ellis, M., Durand, H., and Christofides, P. D., “A Tutorial Review of Economic Model Predictive Control Methods,” J. Process Contr., 24, 1156–1178, 2014.
    Freeman, C. T., Rogers, E., Burridge, J. H., Hughes, A.-M., and Meadmore, K. L., Iterative Learning Control for Electrical Stimulation and Stroke Rehabilitation, Springer, Basel, 2015.
    Forbes, M. G., Patwardhan, R. S., Hamadah, H., and Gopaluni, R. B., “Model Predictive Control in Industry: Challenges and Opportunities,” 9th IFAC Int. Symp. Adv. Contr. Chem. Processes, 48, 531-538, 2015.
    Gao, F. R., Yang, Y., and Shao C., “Robust Iterative Learning Control with Applications to Injection Molding Process,” Chem. Eng. Sci., 56, 7025-7034, 2002.
    Garcia, C. E., “Quadratic Dynamic Matrix Control of Nonlinear Processes: An Application to a Batch Reaction Process,” AIChE Annual Meeting, San Francisco, CA, 1984.
    Garcia, C. E. and Morshedi, A. M., “Quadratic Programming Solution of Dynamic Matrix Control (QDMC),” Chem. Eng. Commun., 46, 73-87, 1986.
    Holkar, K. S. and Waghmare L. M., “An Overview of Model Predictive Control,” Int. J. Contr. Automat., 3, 47-64, 2010.
    Hou, Z. and Xu, J. X., “Freeway Traffic Density Control Using Iterative Learning Control Approach,” Proc. IEEE Int. Conf. Intell. Transp. Syst., 1081–1086, 2003.
    Lee, K. S., Lee, J., Chin, I., Choi, J., and Lee, J. H., “Control of Wafer Temperature Uniformity in Rapid Thermal Processing Using an Optimal Iterative Learning Control Technique,” Ind. Eng. Chem. Res., 40, 1661–1672, 2001.
    Lee, K. S., Chin, I. S., Lee, H. J., and Lee J. H., “Model Predictive Control Technique Combined with Iterative Learning for Batch Processes,” AIChE J., 45, 2175-2187, 1999.
    Lee, J. H., “Model Predictive Control: Review of the Three Decades of Development,” Int. J. Contr. Automat. Syst., 9, 415-424, 2011.
    Marlin, T. E., Process Control: Designing Processes and Control Systems for Dynamic Performance, McGraw-Hill, Singapore, 1995.
    Mesbah, A., Streif, S., Findeisen, R., and Braatz, R. D., “Stochastic Nonlinear Model Predictive Control with Probabilistic Constraints,” Proc. American Control Conf., 2014.
    Mo, S. Y., Wang, L. M., Yao, Y., and Gao, F. R., “Two-time Dimensional Dynamic Matrix Control for Batch Processes with Convergence Analysis against the 2D Interval Uncertainty,” J. Process Control, 22, 899-914, 2012.
    Morari, M. and Lee, J. H., “Model Predictive Control: Past, Present and Future,” Comput. Chem. Eng., 23, 667-682, 1999.
    Oh, S. K. and Lee, J. M., “Iterative Learning Model Predictive Control for Constrained Multivariable Control of Batch Processes,” Comput. Chem. Eng., 93, 284-292, 2016.
    Oh, S. K., A Novel Iterative Learning Control Method Combined with Model Predictive Control for Tracking Specific Points, Graduate thesis, Seoul National University, 2016.
    Allgöwer, F. and Zheng, A., T. A., Nonlinear model predictive control, 1st ed., 369-392, Springer, Basel, 2000.
    Qin, S. J. and Badgwell, T. A., “A Survey of Industrial Model Predictive Control Technology,” Contr. Eng. Pract., 11, 733-764, 2003.
    Richalet, J., Rault, A., Testud, J. L., and Papon J., “Model Predictive Heuristic Control: Applications to industrial processes,” Automatica, 14, 413-428, 1978.
    Seborg, D. E., Edgar, T. F., and Mellichamp, D. A., Process Dynamics and Control, 2nd ed., Wiley, New York, 1989.
    Tan, Y., Sibarani, H., and Samyudia, Y., “Iterative Learning Strategy for a class of Nonlinear Controllers Applied to Constrained Batch Processes,” 5th Asian Control Conf., 2004.
    Uchiyama, M., “Formation of High-Speed Motion Pattern of a Mechanical Arm by Trial,” Trans. Soc. Instrum. Contr. Eng., 14, 706-712, 1978
    Xiong, Z., Zhang, J., Wang, X., and Xu, Y., “Tracking Control for Batch Processes through Integrating Batch-to-Batch Iterative Learning Control and within-Batch On-Line Control,” Ind. Eng. Chem. Res., 44, 3983-3992, 2005.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE