| 研究生: |
蘇弈慎 Su, Yi-Shen |
|---|---|
| 論文名稱: |
技術交易規則的獲利能力:考慮投資者情緒和經濟政策不確定性 The profitability of technical trading rules by considering Investor sentiment and EPU Index |
| 指導教授: |
江明憲
Chiang, Min-Hsien |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 國際企業研究所 Institute of International Business |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 37 |
| 中文關鍵詞: | 技術交易規則 、投資者情緒 、經濟政策不確定性 |
| 外文關鍵詞: | Technical trading rules, Investor sentiment, Economic Policy Uncertainty |
| 相關次數: | 點閱:89 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文旨在探討考慮投資者情緒和經濟政策不確定性為指標使否能增進技術交易規則的獲利能力。以美國道瓊工業平均指數、標普500指數以及那斯達克綜合指數為實證資料,並以Baker and Wurgler (2006) 正交投資者情緒指數及Baker, Bloom et al. (2016) 經濟政策不確定性指數作為考慮投資者情緒和經濟政策不確定性的代理。資料期間為西元1985年1月至2018年12月。本文採用移動平均線交易規則,當考慮投資者情緒指數及經濟政策不確定性指數作為指標時,將715個移動移動平均線交易規則拓展至504,075個交易規則。實證結果顯示,單獨考慮投資者情緒或經濟政策不確定性為指標對技術交易規則的獲利能力皆有顯著的提升,而同時考慮投資者情緒及經濟政策不確定性為指標產生最佳的獲利能力。在三個市場指數中產生一致性的顯著提升獲利能力的規則為,在交易規則的買賣點同時考慮低投資者情緒及中等的經濟政策不確定性。
This article aims to explore whether considering investor sentiment and economic policy uncertainty index values as indicators can improve the profitability of technical trading rules. This article uses the US Dow Jones Industrial Average, S&P 500 Index and NASDAQ Composite Index as empirical data, and uses Baker and Wurgler (2006) orthogonalized investor sentiment index and Baker, Bloom et al. (2016) economic policy uncertainty as proxies of investor sentiment and economic policy uncertainty. The data period is from January 1985 to December 2018. This article uses the moving average (MA) trading rules and when considering the investor sentiment index and the economic policy uncertainty index as indicators, the MA trading rules are in 715 combinations are expanded to 504,075 different combinations of MA trading rules. The empirical results show that considering investor sentiment or economic policy uncertainty alone as an indicator has a significant improvement in the profitability of MA trading rules while considering both investor sentiment and economic policy uncertainty as indicators produces the best profitability. The rule that consistently produces significant profitability in the three market indices is: Consider the low level of investor sentiment and moderate level of economic policy uncertainty at both buying point and selling point.
Bajgrowicz, P. and O. Scaillet (2012). "Technical trading revisited: False discoveries, persistence tests, and transaction costs." Journal of Financial Economics 106(3): 473-491.
Baker, M. and J. Wurgler (2006). "Investor sentiment and the cross‐section of stock returns." The journal of finance 61(4): 1645-1680.
Baker, S. R., et al. (2016). "Measuring economic policy uncertainty." The Quarterly Journal of Economics 131(4): 1593-1636.
Bernanke, B. S. (1983). "Irreversibility, uncertainty, and cyclical investment." The Quarterly Journal of Economics 98(1): 85-106.
Black, F. (1986). "Noise." The journal of finance 41(3): 528-543.
Bloom, N. (2009). "The impact of uncertainty shocks." Econometrica 77(3): 623-685.
Bloom, N., et al. (2007). "Uncertainty and investment dynamics." The review of economic studies 74(2): 391-415.
Blume, L., et al. (1994). "Market statistics and technical analysis: The role of volume." The journal of finance 49(1): 153-181.
Brock, W., et al. (1992). "Simple technical trading rules and the stochastic properties of stock returns." The journal of finance 47(5): 1731-1764.
Brogaard, J. and A. Detzel (2015). "The asset-pricing implications of government economic policy uncertainty." Management Science 61(1): 3-18.
Brown, D. P. and R. H. Jennings (1989). "On technical analysis." The Review of Financial Studies 2(4): 527-551.
Brown, G. W. and M. T. Cliff (2005). "Investor sentiment and asset valuation." The Journal of business 78(2): 405-440.
Brown, S. J., et al. (1998). "The Dow theory: William Peter Hamilton's track record reconsidered." The journal of finance 53(4): 1311-1333.
Carruth, A., et al. (2000). "What do we know about investment under uncertainty?" Journal of economic surveys 14(2): 119-154.
Chen, J., et al. (2017). "Economic policy uncertainty in China and stock market expected returns." Accounting & Finance 57(5): 1265-1286.
Chiang, M-H, K. Karthee and Y.-S. Su (2019), "The Investigation of Technical Trading Rules under Sentiment and Uncertainty ," Working Paper, Institute of International Business, National Cheng-Kung University.
Chung, S.-L., et al. (2012). "When does investor sentiment predict stock returns?" Journal of Empirical Finance 19(2): 217-240.
Cowles 3rd, A. (1933). "Can stock market forecasters forecast?" Econometrica: Journal of the Econometric Society: 309-324.
Cutler, D. M., et al. (1988). What moves stock prices?, National Bureau of Economic Research.
Daniel, K., et al. (1998). "Investor psychology and security market under‐and overreactions." The journal of finance 53(6): 1839-1885.
Daniel, K. D., et al. (2001). "Overconfidence, arbitrage, and equilibrium asset pricing." The journal of finance 56(3): 921-965.
De Long, J. B., et al. (1990). "Noise trader risk in financial markets." Journal of political Economy 98(4): 703-738.
De Long, J. B., et al. (1990). "Positive feedback investment strategies and destabilizing rational speculation." The journal of finance 45(2): 379-395.
Fama, E. F. and M. E. Blume (1966). "Filter rules and stock-market trading." The Journal of business 39(1): 226-241.
Hansen, P. R. (2005). "A test for superior predictive ability." Journal of Business & Economic Statistics 23(4): 365-380.
Hansen, P. R. and A. Lunde (2005). "A forecast comparison of volatility models: does anything beat a GARCH (1, 1)?" Journal of applied econometrics 20(7): 873-889.
Hirshleifer, D. (2001). "Investor psychology and asset pricing." The journal of finance 56(4): 1533-1597.
Hong, H. and J. C. Stein (1999). "A unified theory of underreaction, momentum trading, and overreaction in asset markets." The journal of finance 54(6): 2143-2184.
Hsu, P.-H., et al. (2010). "Testing the predictive ability of technical analysis using a new stepwise test without data snooping bias." Journal of Empirical Finance 17(3): 471-484.
Hsu, P.-H. and C.-M. Kuan (2004). "Re-Examining the Profitability of Technical Analysis with White’s Reality Check." Analysis of High-Frequency Financial Data and Market Microstructure.
Hsu, P.-H., et al. (2016). "Technical trading: Is it still beating the foreign exchange market?" Journal of International Economics 102: 188-208.
Hsu, Y.-C., et al. (2014). "A generalized stepwise procedure with improved power for multiple inequalities testing." Journal of Financial Econometrics 12(4): 730-755.
Jensen, M. C. and G. A. Benington (1970). "Random walks and technical theories: Some additional evidence." The journal of finance 25(2): 469-482.
Jin, X., et al. (2019). "Economic policy uncertainty and stock price crash risk." Accounting & Finance.
Keynes, J. M. (1936). "The General Theory of Employment, Interest and Money."
Kumar, A. and C. M. Lee (2006). "Retail investor sentiment and return comovements." The journal of finance 61(5): 2451-2486.
Lee, C. M., et al. (1991). "Investor sentiment and the closed‐end fund puzzle." The journal of finance 46(1): 75-109.
Levy, R. A. (1967). "Relative strength as a criterion for investment selection." The journal of finance 22(4): 595-610.
Liu, L. and T. Zhang (2015). "Economic policy uncertainty and stock market volatility." Finance Research Letters 15: 99-105.
Lo, A. W. and A. C. MacKinlay (1990). "Data-snooping biases in tests of financial asset pricing models." The Review of Financial Studies 3(3): 431-467.
Lo, A. W., et al. (2000). "Foundations of technical analysis: Computational algorithms, statistical inference, and empirical implementation." The journal of finance 55(4): 1705-1765.
Menkhoff, L. (2010). "The use of technical analysis by fund managers: International evidence." Journal of Banking & Finance 34(11): 2573-2586.
Menkhoff, L. and M. P. Taylor (2007). "The obstinate passion of foreign exchange professionals: technical analysis." Journal of Economic Literature 45(4): 936-972.
Morck, R., et al. (1990). "The stock market and investment: is the market a sideshow?" Brookings papers on economic Activity 1990(2): 157-215.
Neely, C. J., et al. (2014). "Forecasting the equity risk premium: the role of technical indicators." Management Science 60(7): 1772-1791.
Pástor, Ľ. and P. Veronesi (2013). "Political uncertainty and risk premia." Journal of Financial Economics 110(3): 520-545.
Romano, J. P. and M. Wolf (2005). "Stepwise multiple testing as formalized data snooping." Econometrica 73(4): 1237-1282.
Schmeling, M. (2009). "Investor sentiment and stock returns: Some international evidence." Journal of Empirical Finance 16(3): 394-408.
Schwager, J. D. (2012). The new market wizards: Conversations with America's top traders, John Wiley & Sons.
Siegel, J. J. (1992). "Equity risk premia, corporate profit forecasts, and investor sentiment around the stock crash of October 1987." Journal of Business: 557-570.
Smith, D. M., et al. (2016). "Sentiment and the effectiveness of technical analysis: Evidence from the hedge fund industry." Journal of Financial and Quantitative Analysis 51(6): 1991-2013.
Stambaugh, R. F., et al. (2012). "The short of it: Investor sentiment and anomalies." Journal of Financial Economics 104(2): 288-302.
Sullivan, R., et al. (1999). "Data‐snooping, technical trading rule performance, and the bootstrap." The journal of finance 54(5): 1647-1691.
Sweeney, R. J. (1986). "Beating the foreign exchange market." The journal of finance 41(1): 163-182.
Taylor, N. (2014). "The rise and fall of technical trading rule success." Journal of Banking & Finance 40: 286-302.
White, H. (2000). "A reality check for data snooping." Econometrica 68(5): 1097-1126.
Zhou, G. and Y. Zhu (2014). "A Theory of Technical Trading Using Moving Averages." Available at SSRN 2326650.
Zhu, Y. and G. Zhou (2009). "Technical analysis: An asset allocation perspective on the use of moving averages." Journal of Financial Economics 92(3): 519-544.