簡易檢索 / 詳目顯示

研究生: 張炳華
Chang, Bin-Wha
論文名稱: 電阻抗分析於生物感測技術之發展
Development of Bio-Sensing Technology Based on Electrical Impedance Analysis
指導教授: 張憲彰
Chang, Hsien-Chang
學位類別: 博士
Doctor
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 124
中文關鍵詞: 少汗症排汗細胞脫附細胞貼附電阻抗分析
外文關鍵詞: Electrical Impedance Analysis, Cell Attachment, Hypohidrosis, Perspiration, Cell Detachment
相關次數: 點閱:145下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   電阻抗信號(Electrical Impedance Signal)的量測,對於臨床醫學與生物醫學的研究是一項非常有用的工具。其量測之原理是基於生物組織既有的電氣特性或頻率響應 (Frequency Response),以間接定量或觀測各物種間特徵行為的差異性。因而使得電阻抗分析技術(Electrical Impedance Analysis, EIA)成為現今生物響應監測的一種有效方法。此一生物電阻抗特性(Bio-Impedance Characteristic)係藉由物種間,不同的電氣特性與量測技術(阻抗、導納、相角與頻率響應)所獲取的特徵響應,以定性或定量化生物物種的特徵行為。現今,電阻抗分析技術已廣泛的應用於各項研究與應用上。一般而言,電阻抗分析技術具有低價、易於使用與線上監測的優點。在許多近期的研究顯示,電阻抗分析技術的發展已朝向藥品開發(Pharmaceutical Screening)、細胞計數(Cell Counting)、血容比的量測(Hematocrit Measurement)、毒品檢測(Toxin Detection)、細胞培養(Cell Culture)與環境的監測上(Environment Monitoring)。同時在過去發展的階段中,許多不同的電阻抗分析技術或微小電極陣列的應用,已提供了一個相當簡易的分析(或操作)介面,對於不同生物樣本電活性或電阻抗特性的監測。基於此,本研究應用一微小電極陣列,發展一及時性的電阻抗監測系統,用以研究細胞貼附(Attachment))與脫附(Detachment)之行為。並應用一修飾有導電性高分子膜(Conductive Polymer)之迷你型電極陣列,建立起少汗症(Hypohidrosis)患者之臨床分析模型。
    細胞貼附與脫附的電阻抗行為監測
      本研究主要說明電阻抗分析技術於細胞生理行為的即時性分析。應用一微小電極及RGD-C蛋白質(Arginine-Glycine-Aspartic Acid-cellulose binding domain, RGD-C)修飾技術,分別定量出細胞貼附或脫附於電極基材時之介面電導納(Admittance)變化。研究之結果顯示,相較於其它頻段之導電度信號(106 > f > 105 Hz),當量測頻率小於10 kHz之導電度信號下降時,較能相關於細胞貼附至電極表面的細胞數量。相對於電導度的響應,高頻段之電納度增量較能反映出貼附細胞的數量程度。而在RGD-C蛋白的親和性分析上,從MDCK(Madin-Darby Canine Kidney, MDCK)細胞的初始貼附(Initial Attachment Time, ti)及完成貼附(Final Attachment Time, tf)之時間上發現,細胞貼附於有RGD-C蛋白修飾之電極,其ti及tf時間均短於未經蛋白修飾的電極介面上。本研究並利用ti與tf間的低頻導電度變化(1 kHZ),直接檢量102至107 cells/cm2貼附於裸露及修飾電極上的導電變化率,其檢量對應於裸露及修飾電極之斜率(相關係數r )分別為-0.0003(r = 0.92)與-0.0002(r = 0.94)。
    電阻抗分析技術應用於臨床排汗之定量化研究
      此研究中,電阻抗分析技術同時也被應用於臨床排汗的應用性研究。對於臨床少汗症患者的診斷而言,建構一高感度與具即時性響應之濕度感測裝置是有其必要性的。本研究利用一表面修飾有導電性高分子膜PAMPS(poly-(2-acrylamido-2-methy propane sulfonate))之迷你微電極,自組出一套含溫度補償之導電度式濕度量測系統。系統對於相對濕度之檢量範圍為30% RH至95% RH,其靈敏度為6% RH/mS(0.1%RH)。在臨床研究上先建立出正常樣本之不同部位靜態排汗範圍與其相對應之導電度變化。再進行臨床少汗症患者之實證性研究,藉由體表排汗時之經時性導電度變化,鑑別出正常排汗樣本與臨床少汗症患者樣本之差異性。
      綜言之,本研究應用一微小或迷你之電極陣列與電阻抗量測技術,成功的定量化細胞的貼附與脫附行為與其在胞外基質的生理響應,並發展出一套臨床少汗症患者的導電度式鑑別系統。目前,此一電阻抗量測系統,仍持續的應用在低溫冷凍下之生物基材電阻抗特性研究、細胞的移動、細胞與基質間的親和性、培養基質之影響性與藥物的反應性評估。

      Recently, electrical impedance monitoring has become an emerging tool for biomedical research and medical practice. The passive electrical properties provide fruitful information of biological components. The traditional measuring technique revealed several important physical parameters including impedance, admittance, phase angle, and frequency response, those can be resolved precisely in a real-time manner. The measurements require no sophisticated instrumentation to achieve the bioanalytical goals. Recent impedimetric bioanalytical applications include pharmaceutical screening, coulter counter, hematocrit measurement, toxin detection, cell culture, and other clinical and environmental monitoring. Microfabricated devices (microelectrodes) further expended their bioanalytical possibility.
    Impedimetric monitoring for cell attachment/detachment
      In this thesis, impedimetric approaches for monitoring cellular behaviors are demonstrated. The changes in admittance on interdigitated microelectrode plate (IMP) could be obtained when the seeding cell attached to the electrode surface coated with or without RGD-C (Arginine-Glycine-Aspartic Acid-Cellulose binding domain) peptide. The results indicated that a decrement of the conductance at a low frequency of less than 10 kHz responded to the degree of the cell attachment on the electrode surface of IMP. However, there was no significant relationship between the conductance and cell status under the high operating frequency ranging from 105 to 106 Hz. In contrary to the change in conductance, the more cell attachment was, the larger suspectance increased in higher frequency. On RGD-C coated electrode, both the initial time and the finished time for MDCK cell attachment were significantly shorter than that on bare IMP. The conductance change obtained at lower frequency (1 kHz) can allow us to calculate the initial (ti) and finished (tf) time of cell attachment, and the decrement in conductivity (delta G) from ti to tf was obtained and further used to count the initial number of seeding cell. A relationship between delta G and the number of MDCK cell attachment on IMP at 1 kHz frequency was established. As a result, the detection range was around at 102-107 cells/cm2 by using the bare or RGD-C coated IMP, and -0.0003 (r = 0.92) and -0.0002 (r = 0.94) was separately calculated as the quantitative slope (correlation coefficient r), indicative of a good ability in counting cell number.
    Quantitative study on perspiration by applying EIA technique
      Clinical applications of impedimetric method were also studied; a sensitive and real-time device was constructed to monitor sweating process. The humidity sensor is effective in diagnosing hypohidrosis syndrome. The impedance type humidity transducer was made from a poly- (2-acrylamido-2-methy propane sulfonate) polymer film (PAMPS), was impedance type. The detecting range of the sensor is from 30%RH to 95%RH with a log scale, a good linearity exists between the impedance and humidity change, and the resolution (sensitivity) is 6%RH/ms (0.1%RH). This device was applied to assessing the sweating on palm of the normals. Measuring system constructed by a conductometric humidity sensor and a stopped-flow manifold with suitable dynamic range to monitor impaired perspiration. The perspiration from palms of normal individuals and hypohidrosis patients were also monitored and compared. Tangent slopes of the sensorograms were used as an index for discriminating hypohidrosis patients from normal individuals. The conductometric min-sensor and the stopped-flow manifold were proven to be useful as a diagnostic tool for hypohidrosis.
      In summary, these researches have successfully demonstrated that EIA method with microelectrodes of interdigited structure can be used to monitor the cell attachment/detachment over a wide range of frequencies, the interaction between cell and ECM and for the diagnosis of hypohidrosis patients. Currently, this method is continuously improved for applications in cryo-biology study and various cell physiology studies

    Table of Contents Abstract III 中文摘要 V 誌 謝 VII Table of Contents IX List of Tables XIII List of Figures XIV List of Symbols XX Overview 1 Chapter 1 Electrical Impedance Analysis Techniques 2 1.1 Introduction 2 1.2 Basic Principles of Impedance Analysis 6 1.3 Typical Electrical Dispersion in Biology Tissue 9 1.4 Dielectric Properties of Cell Membrane 10 1.5 Impedance Measurements on Cell Biology 18 Chapter 2 Cellular Functions and Responses 23 2.1 Extracellular Matrix and Cellular Adhesion 23 2.2 Cellular Motility 25 2.3 Cell Membrane Impedance 27 Chapter 3 Microelectrode Design and Fabrication 31 3.1 Introduction 31 3.2 Microelectrode Design 31 3.3 Fabrication Processes 32 3.4 Types of Interdigited Electrode 35 Chapter 4 Model of EIA on Monitoring Cell Biology 37 4.1 Introduction 37 4.2 Principle of EIA 38 4.3 Capacitance Calculation of Cells Membrane 43 4.4 EIA Measurement Technology 50 4.5 System Configuration 52 Chapter 5 Real-Time Monitoring of the Cellular Behaviors on Interdigitated Electrodes by Electrical Impedance Analysis System 56 Abstract 56 5.1 Introduction 56 5.2 Materials and Methods 59 5.2.1 Cell Line Maintenance 59 5.2.2 Cell Preparation 59 5.2.3 RGD-C Synthesis 59 5.2.4 Sampling Area Calculation of IDE 60 5.2.5 Impedance Measuring System 61 5.2.6 Time Course Model when Cell Attachment 62 5.3 Results and Discussion 65 5.3.1 Background Measurement 65 5.3.2 Frequency Response for MDCK Cell Growth 67 5.3.3 EIA Measurements of Cell Attachment 69 5.3.4 Effect of RGD Peptide Coating on MDCK Cell Attachment 73 5.3.5 Estimation of Cell Density Using Low Frequency Conductance Signal 76 5.3.6 Calculation of the Seeding Density of Cell Attachment 77 5.3.7 Detachment Behavior of MDCK Cells 79 5.3.8 On-Line Monitoring for PC3 Cell Attachment 82 5.4 Conclusions 84 Chapter 6 A Quantitative Study for Body Perspiration with a Conductivity Based Humidity Sensor 85 Abstract 85 6.1 Introduction 86 6.2 Materials and Equipment 88 6.2.1 Humidity Sensor 88 6.2.2 Measurement System with Flow Control 89 6.2.3 Methods 91 6.2.4 Sweating Estimation 91 6.3 Results and discussion 93 6.3.1 Humidity Calibration Curve in Conductivity Response 93 6.3.2 Typical Curve in Sweat Monitoring 93 6.3.3 Sweating Analysis on Different Body Sites 95 6.4 Conclusions 96 Chapter 7 Monitoring Perspiration from Palms of Hypohidrosis Patients with a Stopped-Flow Conductometric Mini-System 97 Abstract 97 7.1 Introduction 98 7.2 Materials and Methods 99 7.2.1 Materials and Instruments 99 7.2.2 Synthesis and Deposition of a Water-Absorbing Polymer on Interdigitated Electrode 100 7.2.3 Conductometric System 100 7.2.4 Stopped-Flow Sweating Measurement 100 7.3 Results and Discussion 102 7.3.1 Effect of Humidity on Sensor Response 102 7.3.2 Blank Experiments for the Stopped-Flow Measurements 102 7.3.3 Stopped-Flow Signals of Sweating 103 7.4 Conclusions 105 Concluding Remarks and the Prospects 106 References 107 Appendix Protocol for MDCK Cell Culture 115 Personal Profile 116 自述 118 List of Publications (1997 ~ 2004) 119 A. Publication papers 119 B. Conference papers 120 C. Patent 123

    References
    1. J. R. Macdonald, W. R. Kenan, “Impedance spectroscopy: emphasizing solid materials and Systems”, Wiley-Interscience, Chichester, 27-188, 1987.
    2. D. B. Kell, “Biosensors: fundamentals and applications”, A. P. F. Turner, I. Karube and G. S. Wilson (eds.), Oxford University Press, Oxford, 427-468, 1990.
    3. D. B. Kell and C. M. Harris, “A practice model in dielectrophoresis”, J. Bioelectricity, 4:317-348, 1985.
    4. S. S. Dukhin and V. N. Shilov, “Dielectric phenomena and the double layer in disperse systems and polyelectrolytes”, S. S. Dukhin (ed.), Wiley-Interscience, Chichester, 62-90, 1974.
    5. D. B. Kell and C. L. Davey, “Biosensors: a practical approach (the practical approach series)”, J. M. Cooper and T. Cass (eds.), Oxford University Press, Oxford, 125-154, 2004.
    6. E. H. Grant, R. J. Sheppard and G. P. South, “Dielectric behavior of biological molecules in solution”, E. H. Grant (ed.), Clarendon Press, Oxford, 84-120, 1978.
    7. H. P. Schwan, ”Physical techniques in biological research”, W. L. Nastuk (ed.), Academic Press, New York, VI:323-407, 1963.
    8. O. F. Schanne and E. R. P. Ceretti, “Schanne impedance measurements in biological cells”, O. Schanne (ed.), John Wiley & Sons, NY, 210-248, 1978.
    9. C. L. Davey and D. B. Kell, “The low-frequency dielectric properties of biological cells”, D. Walz, H. Berg and G. Milazzo (eds.), “Bioelectrochemistry of Cells and Tissues”, Birkhauser Boston, Germany, 180-194, 1995.
    10. A. M. Dijkstra, B. H. Brown, A. D. Leathard, N. D. Harris, D. C. Barber, and D. L. Edbrooke, “Clinical applications of electrical impedance tomography”, J. Med. Eng. Tech., 17:89-98, 1993.
    11. K. S. Cole, and H. J. Curtis, “Electrical impedance of the squid giant axon during activity”, J. Gen. Physiol., 22:649-670, 1989.
    12. A. L. Hodgkin, and A. F. Huxley, “A quantitative description of membrane current and its application of conduction and excitation in nerve”, J. Physiol., 117:500-544, 1952.
    13. H. Fricke, and S. Morse, “The electric resistance and capacity of blood for frequencies between 800 and 4.5 million cycles”, J. Gen. Physiol., 9:153-167, 1996.
    14. H. Frick, and H. J. Curtis, “The electric impedance of hemolyzed suspensions of mammalian erythrocytes”, J. Gen. Physiol., 18:821-836, 1995.
    15. H. P. Schwan, “Electrical properties of tissue and cell suspensions”, J. H. Lawrence, and C. A. Tobias (eds.), “advances in biological and medical physics”, Academic Press, NY, 147-209 , 1971.
    16. L. L. Hause, R. A. Komorowski, and F. Gayon, “Electrode and electrolyte impedance in the detection of bacterial growth”, IEEE Trans. Biomed. Eng., BME28:403-410, 1981.
    17. I. Giaever, and C. R. Keese, “Monitoring fibroblast behavior in tissue culture with and applied electric field”, Proc. Natl. Acad. Sci., 81:3761-3764, 1984.
    18. I. Giaever, and C. R. Keese, “Use of electric fields to monitor the dynamical aspect of cell behavior in tissue culture”, IEEE Trans. Biomed. Eng., BME33:242-247, 1986.
    19. P. Mitra, C. R. Keese, and I. Giaever, “Electrical measurements can be used to monitor the attachment and spreading of cells in tissue culture”, BioTechniques, 11:504-510, 1991.
    20. I. Giaever, and C. R. Keese, “Fractal motion of mammalian cells”, Physica D, 39:128-133, 1989.
    21. C. R. Keese, and I. Giaever, “A whole cell biosensor based on cell-substrate interactions”, IEEE Proc. Biomed. Eng., 12:500-501, 1990.
    22. I. Giaever, and C. R. Keese, “Toxic? Cells can tell”, Chemtech., 116-125, 1992.
    23. C. R. Keese, and I. Giaever, “A biosensor that monitors cell morphology with electric fields”, IEEE Eng. Med. Bio., 435-445, 1994.
    24. C. M. Lo, C. R. Keese, and I. Giaever, “Monitoring motion of confluent cells in tissue culture”, Exp. Cell Res., 204:102-109, 1993.
    25. C. M. Lo, C. R. Keese, and I. Giaever, “pH changes in pulsed CO2 incubators cause periodic changes in cell morphology”, Exp. Cell Res., 213:391-397, 1994.
    26. M. Kowolenko, C. R. Keese, D. A. Lawrence, and I. Giaever, “Measurement of macrophage adherence and spreading with weak electric fields”, J. Immuno. Methods, 127:71-77, 1990.
    27. C. Tiruppathi, A. B. Malik, P. J. Del Vecchio, C. R. Keese, and I. Giaever, “Electrical method for detection of endothelial cell shape change in real time: assessment of endothelial barrier function”, Proc. Natl. Acad. Sci., 89:7919-7923, 1992.
    28. A. B. Moy, J. V. Engelenhoven, J. Bodmer, J. Kamath, C. R. Keese, I. Giaever, and S. Shasby, “Histamine and thrombin modulate endothelial focal adhesion through centripetal and centrifugal forces”, J. Clin. Invest., 97:1020-1027, 1996.
    29. I. Giaever, and C. R. Keese, “Micromotion of mammalian cells measured electrically”, Proc. Natl. Acad. Sci., 88:7896-7900, 1991.
    30. I. Giaever, and C. R. Keese, “A morphological biosensor for mammalian cells”, Nature, 366:591-592, 1993.
    31. P. M. Ghosh, C. R. Keese, and I. Giaever, “Monitoring electropermeabilization in the plasma membrane of adherent mammalian cells”, Biophys. J., 64:1602-1609 , 1993.
    32. P. Connolly, P. Clark, J. A. Curtis, J. Dow, R. Lind, and C. D. W. Wilkinson, “Extracellular electrodes for monitoring cell cultures”, IOP Short Meeting Series, UK, 21:39-50, 1989.
    33. R. Lind, P. Connolly, and C. D. W. Wilkinson, “Finite-element analysis applied to extracellular microelectrode design”, Sensors and Actuators B, 3:23-30, 1991.
    34. R. Hagedorn, L. Z. Konstanze, E. Richter, J. Hornung, and A. Voigt, “Characterisation of cell movement by impedance measurement on fibroblasts grown on perforated Si-membranes”, Biochim. Biophys. Acta, 1269:221-232, 1995.
    35. J. Wegener, M. Sieber, and H. J. Galla, “Impedance analysis of epithelial and endothelial cell monolayers cultured on gold surfaces”, J. Biochem. Biophys. Methods, 32:151-170, 1996.
    36. R. Ehret, W. Baumann, M. Brischwein, A. Schwinde, K. Stegbauer, and B. Wolf, “Monitoring of cellular behaviour by impedance measurements on interdigitated electrode structures”, Biosensors and Bioelectronics, 12:29-41, 1997.
    37. C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death”, Science, 276:1425-1428, 1997.
    38. D. Bray, “Cell Movements”, Garland Publishing, NY, 236-270, 1992.
    39. H. Lodish, D. Baltimore, A. Berk, S. L. Zipursky, P. Matsudaira, and J. Darnell, “Molecular Cell Biology”, W. H. Freeman & Co, NY, 24-121, 1995.
    40. G. Fuhr, “Examples of three-dimensional micro-structures for handling and investigation of adherently growing cells and submicron particles”, Analyt. Methods and Instrumentation, µTAS’96, 39-54, 1996.
    41. A. L. Hodgkin, and A. F. Huxley,”A quantitative description of membrane current and its application to conduction and excitation in nerve”, J. Physiology, 117:500-544, 1952.
    42. B. Hille, “Ionic Channels of Excitable Membranes”, Sinauer Associates, MA, 98-206, 1992.
    43. K. S. Cole, and H. J. Curtis, “Electrical impedance of the squid giant axon during activity”, J. Gen. Physiol., 22:649-670, 1989.
    44. H. P. Schwan, “Biological effects of non-ionizing radiations: cellular properties and interactions”, Annals of Biomed. Eng., 16:245-263, 1988.
    45. H. H. Chang, J. H. Kau, S. J. Lo, D. S. Sun, “Cell-adhesion and morphological changes are not sufficient to support anchorage-dependent cell growth via non-integrin-mediated attachment”, Cell Biol. Int. 27:123-133, 2003.
    46. O. Akira, G.. T. Masaaki, G.. T. Tetsuya, Y. N. Masao, M. K. Sadahiko, K. K. Takeshi, T. K. Teruo, “Substrate affects the initial attachment and subsequent behavior of human osteoblastic cells (Saos-2)”, Biomaterials, 22:2263-2271, 2001.
    47. E. Verderio, B. Nicholas, S. Gross, M. Griffin, “Regulated expression of tissue transglutaminase in Swiss 3T3 fibroblasts: effects on the processing of fibronectin, cell attachment and cell death“, Exp. Cell Res. 239:119-138, 1998.
    48. H. Oharazawa, N. Ibaraki, L. R. Lin, V. N. Reddy, “The effects of extracellular matrix on cell attachment, proliferation and migration in a human lens epithelial cell line”, Exp. Eye Res. 69:603-610, 1999.
    49. K. C. Matsuzaka, W. M. X. Frank, M. S. Yoshinari, T. S. Inoue, J. A. Jansen, “The attachment and growth behavior of osteoblast-like cells on microtextured surfaces” Biomaterials, 24:2711-2719, 2003.
    50. S. N. Yashiki, R. T. Umegaki, M. H. Kino-Oka, M. H. Taya, “Evaluation of attachment and growth of anchorage-dependent cells on culture surfaces with type I collagen coating”, J. Biosci. Bioeng. 92:385-388, 2001.
    51. M. P. Sheetz, “Cell migration by graded attachment to substrates and contraction “, Semin. Cell Biol., 5:149-155, 1994.
    52. J. G. Steele, B. A. Dalton, G.. H. Johnson, P. A. Underwood, “Adsorption of fibronectin and vitronectin onto primariaTM and tissue culture polystyrene and relationship to the mechanism of initial attachment of human vein endothelial cells and BHK-21 fibroblasts”, Biomaterials, 16:1057-1067, 1995.
    53. A. Lablack, V. Bourdon, N. Defamie, C. Batias, M. Mesnil, P. Fenichel, G.. Pointis, D. Segretain, “Ultrastructural and biochemical evidence for gap junction and connexin 43 expression in a clonal Sertoli cell line: a potential model in the study of junctional complex formation“, Cell Tissue Res. 294:279-287, 1998.
    54. J. M. Staddon, L. L. Rubin, “Cell adhesion, cell junctions and the blood-brain barrier”, Curr. Opin. Neurobiol., 6:622-627, 1996.
    55. W. W. Franke, R. Moll, H. Mueller, E. Schmid, C. Kuhn, R. Krepler, U. Artileb, H. Denk, ”Immunocytochemical identification of epithelium-derived human tumours with antibodies to desmosomal plaque proteins”, Proc. Natl. Acad. Sci., USA, 80:543-547, 1983.
    56. P. Claude, “Morphological factors influencing transepithelial permeability: a model for the resistance of the zonula occludens”, J. Membr. Biol. 39:219-232, 1978.
    57. K. S. C. Ko, C. M. Lo, J. Ferrier, P. Hannam, M. Tamura, B. C. McBride, R. P. Ellen, “Cell-substrate impedance analysis of epithelial cell shape and micromotion upon challenge with bacterial proteins that perturb extracellular matrix and cytoskeleton”, J. Microbiol. Meth., 34:125-132, 1998.
    58. J. Robert, Jr. Pelham, Y. L. Wang, “Cell locomotion and focal adhesions are regulated by substrate flexibility”, Proc. Natl. Acad. Sci., 94:13661-13665, 1997.
    59. M. Abercrombie, “The bases of locomotory behaviour of fibroblasts”, Exp. Cell Res. Suppl., 8:188, 1961.
    60. C. R. Keese, I. Giaever, “Substrate mechanics and cell spreading”, Exp. Cell Res., 195:528-532, 1991.
    61. V. Hedin, B. A. Bottger, J. Luthman, S. Johansson, J. Thyberg, “A substrate of the cell attachment sequence of fibronectin (Arg-Gly-Asp-Ser) is sufficient to promote transition of arterial smooth muscle cells from a contractile to a synthetic phenotype“, Dev. Biol., 133:489-501, 1989.
    62. G.. E. Edelman, “Modulation of cell adhesion during induction, histogenesis, and perinatal development of the nervous system”, Annu. Rev. Neurosci., 7:339-337, 1984.
    63. L. Dillner, K. Dickerson, M. Manthrope, E. Ruoslahti, E. Engvall, “The neurite-promoting domain of human laminin promotes attachment and induces characteristic morphology in non-neuronal cells“, Exp. Cell Res., 177:186-198, 1988.
    64. G.. Sagvolden, I. Giaever, E. O. Petersen, J. Feder, ”Cell adhesion force microscopy”, Proc. Natl. Acad. Sci., USA, 96:471-476, 1999.
    65. I. Giaever, C. R. Keese, “Use of electric fields to monitor the dynamical aspect of cell behavior in tissue culture”, IEEE Trans. Biomed. Eng., 33:242-247, 1986.
    66. C. M. Lo, C. R. Keese, I. Giaever, “Monitoring motion of confluent cells in tissue culture”, Exp. Cell Res., 204:102-109, 1993.
    67. J. Wegener, C. R. Keese, I. Giaever, “Electric cell-substrate impedance sensing as a non-invasive means to follow the kinetics of cell spreading on artificial surfaces“, Exp. Cell Res., 259:158-166, 2000.
    68. C. M. Lo, C. R. Keese, I. Giaever,” Impedance analysis of MDCK cells measured by electric cell-substrate impedance sensing”, Biophys. J., 69:2800-2807, 1995.
    69. R. Ehret, W. Baumann, M. Brischwein, A. Schwinde, K. Stegbauer, B. Wolf, “Monitoring of cellular behavior by impedance measurements on interdigitated electrode structures”, Biosens. Bioelectron., 12:29-41, 1997.
    70. J. Wegener, M. Sieber, H. J. Galla, “Impedance analysis of epithelial and endothelial cell monolayers cultured on gold surfaces “, J. Biochem. Bioph. Methods, 32:151-170, 1996.
    71. J. Sambrook, D. W. Russell, “Molecular cloning: a laboratory manual”, 3rd edn., NY, CSHL, 2001.
    72. T. Meada, K. Hashino, R. Oyama, K. Titani, K. Sekguchi, “Artificial cell adhesive proteins engineered by grafting the Arg-Gly-Asp cell recognition signal: factors modulating the cell adhesive activity of the grafted signal”, J. Biochem., 110:381-387, 1991.
    73. I. Giaever, C. R. Keese, “Micromotion of mammalian cells measured electrically “, Proc. Natl. Acad. Sci., USA, 88:7896-7900, 1991.
    74. C. Polk, E. Postow, “Handbook of biological effects of electromagnetic fields”, 2nd edn., CRC, FL, 25-130, 1996.
    75. P. M. Mitra, C. R. Keese, I. Giaever, “Electric measurements can be used to monitor the attachment and spreading of cells in tissue culture“, Biotechniques, 11:504-511, 1991.
    76. J. Schwartz, M. J. Avaltroni, M. P. Danahy, B. M. Silverman, E. L. Hanson, J. E. Schwarzbauer, K. S. Midwood, E. S. Gawalt, “Cell attachment and spreading on metal implant materials “, Mat. Sci. Engr. C, 23:395-400, 2003.
    77. C. M. Lo, C. R. Keese, I. Giaever, “pH changes in pulsed CO2 incubator cause periodic changes in cell morphology”, Exp. Cell Res., 213:391-397, 1994.
    78. H. J. Hurley, “Disease of the eccrine sweat gland”, S. L. Moschella and H. J. Hurely, (eds.), Dermatology, W. B. Saunders, 3rd edn., PA, 1514-1537, 1992.
    79. M. V. Botet, “Disorders of the eccrine and apocrine sweat glands”, O. Canizares and R. R. M. Harman (eds.), Clinical tropical dermatology, Blackwell. Science, 2nd edn., Boston, 595-606, 1992.
    80. T. C. Hindson, “A comparison of experimentally produced prickly heat and hypohidrosis in Gurkha and British troops”, J. Invest. Dermatol., 52:543-544, 1969.
    81. I. Sarkany, P. M. Gaylarde, “A method for demonstration of sweat glands activity”, Br. J. Dermatol., 80:601-605, 1968.
    82. K. T. Sato, A. Richardson, D. E. Timm, K. Sato, “One-step iodine starch method for direct visualization of sweating”, Am. J. Med. Sci., 295:528-531, 1988.
    83. T. Turner, G. Gass, “Development of a multi-site sweat rate sensor”, Med. Sci. Sports Exerc., 25:s28, 1985.
    84. J. D. Cotter, M. J. Patterson, N. A. S. Taylor, “Sweat distribution before and after repeated heat exposure”, Eur. J. Appl. Physiol., 76:181-186, 1997.
    85. N. Kondo, M. Nakadome, K. Zhang, T. Shiojiri, M. Shibasaki, K. Hirata, A. Iwata, “The effect of change in skin temperature due to evaporative cooling on sweating response during exercise”, Int. J. Biometeorol., 40:99-102, 1997.
    86. J. L. Leveque, J. de Rigal, “Impedance methods for studying skin moisturization”, J. Soc. Cosmet. Chem., 34:419-428, 1983.
    87. M. Loden, M. Lindberg, “The influence of a single application of different moisturizers on the skin capacitance”, Acta Derm. Venereol (stockh), 71:79-82, 1991.
    88. K. H. Pigott, S. Dische, B. Vojnovic, M. I. Saunders, “Sweat gland function as a measure of radiation change”, Radiother. Oncol., 54:79-85, 2000.
    89. B. Elie, P. Guiheneue, “Sympathetic skin response: normal results in different experimental conditions”, Electro. Clinical Neurophysiol., 76:258-267, 1990.
    90. P. A. Low, “Autonomic nervous system function”, J. Clin. Neurophisiol., 10:14-27, 1993.
    91. K. Matsunaga, T. Uozumi, S. Tsuji, Y. Murai, “Sympathetic skin responses recorded from non-palmar and non-plantar skin sites: their role in the evaluation of thermal sweating”, Electro. Clinical. Neurolphysiol., 100:319-331, 1996.
    92. Y. Inoue, M. Nakao, T. Araki, H. Murakami, “Regional differences in the sweating responses of older and younger men”, J. Appl. Physiol., 71:2453-2459, 1991.
    93. R. O. Potts, Jr. D. A. Christman, Jr. E. M. Buras, “The dynamic mechanical properties of human skin in vivo”, J. Biomech., 16:365-372, 1983.
    94. Y. Inoue, M. Nakao, S. Okudaira, H. Ueda, T. Araki, “Seasonal variation in sweating responses of older and younger men”, Eur. J. Appl. Physiol., 70:6-12, 1995.
    95. Y. Inoue, M. Nakao, H. Ishizashi, J. Tsujita, T. Araki, “Regional differences in the Na+ reabsorption of sweat glands”, Appl. Human Sci., 17:219-221, 1998.
    96. Y. Inoue, G. Havenith, W. L. Kenney, J. L. Loomis, E. R. Buskirk, “Exercise and methylcholine-induced sweating responses in older and younger men: effect of heat acclimation and aerobic fitness”, Int. J. Biometeorol., 42:210-216, 1999.
    97. M. Nischik, C. Forster, “Analysis of skin erythema using true-color images”, IEEE Trans. Med. Imaging, 16:711-716, 1997.
    98. B. Riedl, M. Nischik, F. Birklein, B. Neundörfer, H. O. Handwerker, “Spatial extension of sudomotor axon reflex sweating in human skin”, J. Aut. Nerv. Syst., 69:83-88, 1998.
    99. F. Birklein, R. Sittl, A. Spitzer, D. Claus, B. Neundörfer, H. O. Handwerker, “Sudomotor function in a sympathetic reflex dystrophy”, Pain, 69:49-54, 1997.
    100. M. Shibasaki, Y. Inoue, N. Kondo, “Mechanisms of underdeveloped sweating responses in prepubertal boys”, Eur. J. Appl. Physiol., 76:340-345, 1997.
    101. N. Kondo, M. Nakadome, K. Zhang, T. Shiojiri, M. Shibasaki, K. Hirata, A. Iwata, “The effect of change in skin temperature due to evaporative cooling on sweating response during exercise”, Int. J. Biometeorol., 40:99-102, 1997.
    102. B. W. Chang, S. J. Yeh, P. P. Tsai, H. C. Chang, “A novel evaluation method for sweating disorders based on physiohumidity sensor”, Proc. Annual Symp. Biomed. Engineer., Taiwan, 314-316, 1998.
    103. B. W. Chang, S. J. Yeh, P. P. Tsai, H. C. Chang, “A study for human body sweating based on physiological sudorometer”, Proc. Annual. Symp. Biomed. Engineer., Taiwan, 87-88, 1999.
    104. B. W. Chang, S. J. Yeh, P. P. Tsai, H. C. Chang, “Monitoring perspiration from palms of hypohidrosis patients with a stopped-flow conductometric mini-system” Clinica Chimica Acta, 2004, in press.
    105. P. P. Tsai, C. Y. Lee, “Impedance type humidity sensors using 2-acrylamido-2-methylpropane sulfonate based polymeric materials”, Proc. 7th Chem. Sensors Conf., Korea, 342-343, 1998.
    106. A. L. Phillip “Sudomotor function and dysfunction”, A. L. Phillip (ed.), “Clinical Autonomic Disorders: Evaluation and Management”, 2nd edn., Lippincott Williams & Wilkins, 479-489, 1997.
    107. M. V. Botet, “Disorders of the eccrine and apocrine sweat glands”, R. M. H. Roger, O. Canizares, R. M. Harman (eds.), “Clinical tropical dermatology”, 2nd edn., Blackwell Science, 595-606, 1992.
    108. L. M. Lao, M. Kumakiri, H. Mima, H. Kuwahara, H. Ishida, K. Ishiguro. “The ultrastructural characteristics of eccrine sweat glands in a Fabry disease patient with hypohidrosis”, J. Dermatol. Sci.; 18:109-117, 1998.
    109. F. Pruvost, L. Vaillant, A. Callens, L. Machet, A. Muret, B. Hüttenberger, F. Patat, G.. Lorette “Sjögren's syndrome: dry skin or asteatotic skin”, J. Invest. Dermatol., 108:825, 1997.
    110. M. Frydman, H. A. Cohen, A. Kauschansky, Y. Matoth. “Familial simple hypohidrosis with abnormal palmar dermal ridges”, A. J. Med. Genetics, 31:591-596, 1988.
    111. K. H. Pigott, S. Dische, B. Vojnovic, M. I. Saunders. “Sweat gland function as a measure of radiation change”, Radiother. Oncol., 54:79-85, 2000.
    112. B. E. Nancy, J. C. Salvatore, P. A. Blanche, W. B. Saul, “Pupillotonia, byporeflexia, and segmental hypohidrosis: autonomic dysfunction in a child”, J. Pediatrics, 852-859, 1968.
    113. T. Ohhashi, M. Sakaguchi, T. Tsuda, “Human perspiration measurement” Physiol. Meas., 19:449-461, 1998.
    114. J. L. Leveque, J. De. Rigal. ”Impedance methods for studying skin moisturization”, J. Soc. Cosmet. Chem., 34-419, 1983.
    115. R. Sakai, M. Sadaoka, “Humidity sensor composed of a microporous film of polyethylene-graft-poly- (-2-acrylamido-2-methylpropane sulfonate)”, Polymer Bull., 18:501-506, 1987.
    116. L. Chen, T. Honma, T. Mizutani, J. P. Gong, D. J. Liaw, Y. Osada “Effect of polyelectrolyte complexation on the UCST of zwitterionic polymer”, Polymer, 41:141-147, 2000.
    117. Z. B. Hu, Y. Y. Chen, C. J. Wang, Y. D. Zheng, Y. Li, “Polymer gels with engineered environmentally responsive surface patterns”, Nature, 393:149-152, 1998.

    下載圖示 校內:2005-06-30公開
    校外:2005-06-30公開
    QR CODE