| 研究生: |
曾雅玟 Tseng, Ya-Wen |
|---|---|
| 論文名稱: |
還原碴再利用於膠結材料及膨脹行為改善之研究 Ladle Furnace Slag Reused in Bonding Materials and Improvement of Expansion Behavior. |
| 指導教授: |
陳昭旭
Chen, Chao-Shi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 還原碴 、膠結材料 、鹼活化 、熱壓膨脹 |
| 外文關鍵詞: | LFS, Bonding Materials, Alkali Activation, Volume Stability |
| 相關次數: | 點閱:91 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
還原碴是電弧爐煉鋼過程中還原期所產生之工業副產品,早期多被認定為工業廢棄物。然而,由於還原碴的成分與組成和卜特蘭水泥以及常用的卜作嵐材料(飛灰、水淬爐石粉等)相當接近,故具有作為膠結材料替代水泥之潛力,現今多朝資源化再利用作為混凝土材料的方向進行研究,而非單純視為工業廢棄物來進行處置。
為了達到提升還原碴去化量與減少水泥用量之目的,本研究將以還原碴作為膠結材料替代水泥,並找出最佳還原碴水泥配比設計,且利用添加鹼活化劑之方式提升去化量及改善膨脹行為。所製備的砂漿試體則透過抗壓、熱壓膨脹、凝結時間和微觀分析等試驗項目,探討還原碴細度變化、還原碴用量與水膠比用量等應用方式,對砂漿試體的工程特性影響之差異,評估還原碴作為膠結材料取代水泥,製備成還原碴水泥的最佳應用方式和最佳配比。
從研究結果中可得知,無論以何種方式作為砂漿試體的膠結材料,隨還原碴用量增加,對強度發展與膨脹行為等都有負面影響,還原碴水泥之還原碴用量建議以膠結材料重量百分比的20 %為上限。而還原碴的細度變化則對強度發展趨勢與膨脹行為無嚴重的影響。在添加鹼活化劑的應用方式中,經過鹼活化劑之添加,膨脹行為可以大幅改善,且在替代量提升中可發現细度增加可以提升抗壓強度與降低膨脹量,添加鹼活化劑後替代量可達40 %(细度5000cm2/g的條件下),為極具潛力的膠結材料應用形式。
Bacuse the composition of Ladle furnace slag (LFS) is fairly similar to Ordinary Portland cement (OPC), it has the potential to be the bonding material or admixture for concrete. Therefore, instead of simply seeing it as a waste, recent studies focus mainly on recycling and reuse. In order to eliminate LFS and reduce cement consumption, this study will be divided into three parts to discuss the feasibility of LFS reutilization for cement and the improvement of expansion behavior: (1) Analysis of the basic characteristics of LFS and the relationship between grinding fineness and engineering properties, (2) Discussion on the relationship between water-cementitious material ratio (W/CM), LFS replacement cement dosage and engineering characteristics, and (3) Making alkali-activated cement mortar to explore the improvement of expansion behavior and compressive strength. After the above three parts of the results, we can get the best design of mix proportion of a group of blended cement of Ladle furnace slag and Ordinary Portland cement. The design of mix proportion of this group is evaluated by CNS 15286 to determine that the ratio meets the standards of hydraulic cement. According to the results, excessive LFS can have a negative impact on engineering performance, such as strength development, volume stability, and the like. And through the research results, the best ratio design is: LFS raw material over #30 sieve fineness is 1200 cm2/g, cement replacement amount is 20 wt%, water-cementitious material ratio (W/CM) is 0.485. According to the results of alkali-activated cement mortar, it is known that the addition of cement mortar to alkali-activated chemicals can effectively improve the expansion behavior, but the addition of an excess of alkali activator will lead to the negative impact of strength development, and the study found that FLS can be regarded as Alkali activators are used.
Bakharev, T., J. G. Sanjayan & Y. B. Cheng (1999), "Alkali activation of Australian slag cement." Cement and Concrete Research 29(1): 113-120.
Bentz, D. P., M. R. Geiher & K. K. Hansen (2001), "Shrinkage-reducing admixtures and early-age desiccation in cement pastes and mortars." Cement and Concrete Research 31(7): 1075-1085.
Buchwald, A & M. Schulz (2005), "Alkali-activated binders by use of industrial by-products." Cement and Concrete Research 35(5): 968-973.
Chen, W & H. Brouwers (2012), "Hydration of mineral shrinkage-compensating admixture for concrete: An experimental and numerical study." Construction and Building Materials 26(1): 670-676.
Chindaprasirt, P., S. Homwuttiwong & S. Sirivivatuanon (2004), "Influence of fly ash fineness on strength, drying shrinkage and sulfate resistance of blended cement mortar." Cement and Concrete Research 34(7): 1087-1092.
Collepardi, M., A. Borsoi, S. Collepardi & O. J. J. Olagot (2005), "Effects of shrinkage reducing admixture in shrinkage compensating concrete under non-wet curing conditions." Cement and Concrete Composites 27(6): 704-708.
Collins, F. G & J. G. Sanjayan (1999), "Workability and mechanical properties of alkali activated slag concrete." Cement and Concrete Research 29(3): 455-458.
Herrero, T., I. J. Vegas, A. Santamaria, J. T. San-Jose & M. Skarf (2016), "Effect of high-alumina ladle furnace slag as cement substitution in masonry mortars." Construction and Building Materials 123: 404-413.
Jennings, H. M. (2000), "A model for microstructure of calcium silicate hydrate in cement paste." Cement and Concrete Research 30(1): 101-116.
Jimenez, A. F., J. G. Palomo & F. Puertas (1999), "Alkali-activated slag mortars mechanical strength behavior." Cement and Concrete Research 29: 1313-1321.
Juenger, M. C. G & H. M. Jennings (2002), "Examining the relationship between the microstructure of calcium silicate hydrate and drying shrinkage of cement pastes." Cement and Concrete Research 32(2): 289-296.
Luckman, M., V. Satish & V. D. (2009), "Cementitious and pozzolanic behavior of electric arc furnace steel Slags." Cement and Concrete Research 39(2): 102-109.
Manso, J. M., A. Rodriguez, A. Aragon & J. J. Gonzalez (2011), "The durability of masonry mortars made with ladle furnace slag." Construction and Building Materials 25(8): 3508-3519.
Manso, J. M., V. O. Lopez, J. A. Polance & J. Setien (2013), "The use of ladle furnace slag in soil stabilization." Construction and Building Materials 40: 126-134.
Murmu, M & S. P. Singh (2014), "Hydration products, morphology and microstructure of activated slag cement." International Journal of Concrete Structures and Materials 8(1): 61-68.
Neto, A. A. M., M.A. Cincotto & W. Repette (2008), "Drying and autogenous shrinkage of pastes and mortars with activated slag cement." Cement and Concrete Research 38(4): 565-574.
Papayianni, I., G. Tsohos, N. Oikonomou & P. Mavria (2005), "Influence of superplasticizer type and mix design parameters on the performance of them in concrete mixtures." Cement and Concrete Composites 27(2): 217-222.
Sheen, Y. N., D. H. Le & T. H. Sun (2015), "Greener self-compacting concrete using stainless steel reducing slag." Construction and Building Materials 82: 341-350.
Shi, C & R. L. Day (1996), "Some factors affecting early hydration of alkali-slag cement." Cement and Concrete Research 26(3): 439-447.
Shi, C. (2004), "Steel slag—its production, processing, characteristics, and cementitious properties." Journal of Materials in Civil Engineering 16(3): 230-236.
Song, S & H. M. Jennings (1999), "Pore solution chemistry of alkali-activated ground granulated blast-furnace slag." Cement and Concrete Research 29(2): 159-170.
Stutzman, P. E. (2001), "Scanning electron microscopy in concrete petrography." United States. National Institute of Standards and Technology Publisher.
Tang, M. (1973), "Investigation of mineral composition of steel slag for cement." Production. Research Report, Nanjing Institute of Chemical, Technology, Nanjing, China.
Vilaplana, A. S. d. G., V. J. Ferreira, A. M. L. Sabiron, A. A. Uson, C. L. Gonzalez, C. B. Conde & G. Ferreria (2015), "Utilization of Ladle Furnace slag from a steelwork for laboratory scale production of Portland cement." Construction and Building Materials 94: 837-843.
Wang, S. D., K. L. Scrivener & P. L. Pratt (1994), "Factors affecting the strength of alkali-activated slag." Cement and Concrete Research 24(6): 1033-1043.
Young, J. F., S. Mindess & D. David (2003), "Concrete." United States: Prentice Hall Publisher.
Yuan, X. H., W. Chen, Z. A. Lu & H. Chen (2014), "Shrinkage compensation of alkali-activated slag concrete and microstructural analysis." Construction and Building Materials 66: 422-428.
Zhang, M. H & V. M. Malhotra (1996), "High-performance concrete incorporating rice husk ash as a supplementary cementing material." ACI Materials Journal 93(6): 629-636.
王小剛、史才軍、何富強、元強、王德輝、黃勇、李慶齡(2013),氯離子结合及其對水泥基材料微觀結構的影響,硅酸鹽学报,第四十一卷,第二期,第187~198頁。
江慶陞(1981),爐石的資源化,技術與訓練,第六卷,第九期。
吳明富(2013),還原碴-高爐石作為混合膠結材料之應用,國立中央大學土木工程研究所碩士學位論文。
李宜桃(2003),鹼活化還原碴漿體收縮及抑制方法之研究, 國立中央大學土木工程研究所碩士學位論文。
沈永年(1990),添加防水摻料對水泥砂漿/漿體巨微觀性質影響之研究,技術學刊,第五卷,第二期。
林宗壽(2015),過硫磷石膏礦渣水泥與混凝土,武漢理工大學出版社。
林柏彰(2012),還原碴取代水泥性質之研究,國立臺北科技大學,土木與防災研究所碩士學位論文
林庭亦(2003),電弧爐還原渣再生應用於高性能混凝土性質之研究,國立台灣科技大學營健工程系碩士學位論文。
張復盛,許伯良(2014),他山之石 國外爐石/碴之應用,中國鑛冶工程學會會刊,第227期,第43~48頁。
郭文田,翁明偉(2009),利用脫硫渣與水淬爐石產製無卜特蘭水泥控制性低強度材料,中正嶺學報,第三十八卷,第一期。
陳瑞鈴、黃然(2010),鹼活化爐石混凝土應用於營建材料之研究,內政部建築研究所。
傅國柱(2002),還原碴取代部分水泥之研究,國立中央大學土木工程研究所碩士學位論文。
曾仕文(2013),電弧爐還原碴應用於控制性低強度材料及其安定化成效評估研究,國立中央大學土木工程研究所碩士學位論文。
黃兆龍(1985),固態廢料處理研究方案之二-爐石在混凝土的應用,財團法人台灣營建研究中心。
黃兆龍,洪文方(1986),普通水泥中添加高爐熟料之影響,高爐石與飛灰資源在工程上應用研討會論文集,第125~142頁。
黃偉倫(2015), 爐碴在水泥基質材料中的膨脹行為及安定化方法初探, 中原大學土木工程研究所碩士學位論文。
楊貫一(1992),爐石資源化-中鋼公司爐石應用的過去與未來,技術與訓練,第十七卷,第一期,第31~46頁。
楊逸亞(2017),不鏽鋼渣的安定化,國立成功大學,資源工程學系大學專題。
經濟部工業局(2001),電弧爐煉鋼還原碴資源化應用技術手冊。
葉平堯(2017),還原碴再利用於膠結材料水化特性之研究,國立成功大學資源工程學系碩士學位論文。
劉國忠(2001),煉鋼爐渣之資源化技術與未來推展方向,環保月刊,第四期十月號,第117~118頁。
蔡和生(2016),鹼活化還原碴砂漿之工程與環境特性研究 國立成功大學環境工程研究所碩士學位論文。
蕭遠智(2002),鹼活化電弧爐還原碴之水化反應特性,國立中央大學土木工程研究所碩士學位論文。
羅康維(2014),還原碴、水洗灰與泥渣類廢棄物共同燒製水泥之水化特性研究,宜蘭大學環境工程學系碩士學位論文。