簡易檢索 / 詳目顯示

研究生: 蘇郁清
Su, Yu-Chin
論文名稱: 神經壞死病毒所誘發宿主細胞死亡之分子機制研究
The molecular mechanism of betanodavirus-regulated host cell death
指導教授: 洪健睿
Hong, Jiann-Ruey
學位類別: 博士
Doctor
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 142
中文關鍵詞: 神經壞死病毒粒線體內質網壓力細胞死亡蛋白B2
外文關鍵詞: betanodavirus, mitochondria, ER stress, cell death, protein B2
相關次數: 點閱:97下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石斑魚為台灣重要高經濟價值養殖魚種,在魚苗孵育過程易受神經壞死病毒感染造成高死亡率,使漁業經歷重大經濟損失。魚體受到神經壞死病毒感染後,會在腦及視網膜出現空泡化的壞死病變,同時魚體會出現體色變黑及不正常螺旋泳動等病徵。
    在本實驗室過去研究中證實,神經壞死病毒感染會造成宿主細胞經由破壞粒線體膜電位而釋放細胞色素c的方式使細胞走向先凋亡後壞死的死亡路徑。然而,病毒感染的致死機制尚未十分清楚,值得進行深入研究。
    本論文針對病毒致死機制及病毒非結構性蛋白功能提出下列四項問題,並嘗試回答。 1. 神經壞死病毒是否會造成宿主細胞內質網壓力。 2. 內質網壓力是否包含在病毒所引起的粒線體主導死亡路徑。 3. 神經壞死病毒非結構性蛋白B2之位置及其致死機制之研究。
    在研究中發現,神經壞死病毒造成宿主細胞死亡機制如下:第一,先引發宿主產生內質網壓力而大量表現GRP78,而後GRP78會和病毒的RdRp相互作用而促進病毒之複製及病毒致死蛋白之表現。第二,內質網壓力所造成的Bcl-2表現下降、caspase-12的活化及病毒致死蛋白的表現皆使細胞經由喪失粒線體膜電位而走向粒線體主導的細胞死亡路徑。最後,本論文證實B2為一個細胞壞死的誘導因子,可促使Bax表現而使細胞經由粒線體膜電位喪失之路徑走向死亡。同時,也證實B2可利用其粒線體訊號胜肽(41RTFVISAHAA50) 進入粒線體而誘使粒線體喪失其功能,如膜電位喪失及ATP缺乏,使細胞走向能量缺失主導的細胞壞死路徑。
    從本論文研究中,希望能在神經壞死病毒感染的治病機制上能提供新的見解,並在病毒的防治上有所貢獻。

    Betanodaviruses cause viral nervous necrosis (VNN), an infectious neuropathological condition in fish that is characterized by necrosis of the central nervous system, including the brain and retina. This disease causes mass mortality, resulting in rapid and complete loss of fish in the hatchery, leading to serious economic losses for the aquaculture industry.
    In previous study, betanodavirus infection induces mitochondria-mediated necrotic cell death via cytochorme c release and viral death proteins expressed may be involved in this necrotic process. However, the upstream of mitochondria-mediated necrotic cell death and the mechanism of betanodavirus non-structural protein (B1 and B2) function are still ill understood.
    In this thesis, we asked following question and examined the possibility that (1) whether and why RGNNV induces ER stress response in infected-cell, (2) if ER stress response is involving in upstream of mitochondria-mediated necrotic cell death in RGNNV infected cell, (3) characterize and identify protein B2 mitochondrial targeting and its function.
    We found that the death process of RGNNV infection is through ER-mitochondria-mediate necrotic cell death. As follows: First, RGNNV infection induces ER stress and upregulates the expression of GRP78 and which interacts with viral RdRp to enhance virus replication and viral death factors (protein α and B2) expression. Then, downregulation of Bcl-2 and expression of viral death factor causes mitochondria-mediated necrotic cell death via loss of MMP and cytochorme c released. Additionally, protein B2 is a necrotic death factor that triggers MMP loss via upregulation of pro-apoptotic protein Bax expression. Protein B2 locates to mitochondria via 41 RTFVISAHAA50 signal peptide and then causes mitochondria dysfunction (MMP loss and ATP depletion) and triggers cell undergoing bioenergetic crisis and necrotic cell death. Our studies may provide some insights into the pathogenesis of RGNNV infection.

    Contents English abstract I Chinese abstract III Acknowledgments V List of publish paper VI Contents VII Chapter 1. Introduction 1 1.1 Viral nervous necrosis (VNN) and nervous necrosis virus (NNV) 1 1.1.1 Viral nervous necrosis 1 1.1.2 Nervous necrosis virus 1 1.2 Cell death mechanism 2 1.2.1 Apoptosis 2 1.2.2 Autophagic cell death 3 1.2.3 Necrotic cell death or necrosis 3 1.3 The ER stress response 4 1.3.1 The mechanism of ER stress response 4 1.3.2 Virus induces host ER stress response 5 1.3.3 ER chaperon and virus replication 5 1.4 Viral proteins regulate host cell death 6 1.4.1 Viral pro-cell death proteins 6 1.4.2 Viral anti-cell death proteins 9 1.5 Betabodavirus induce host cell death 11 1.5.1 Protein α as a post-necrotic death factor 11 1.5.2 The nonstructural protein B2 as a host RNA interference (RNAi) suppressor 12 1.5.3 The nonstructural protein B1 as a anti-necrotic death factor 12 1.6 Object and specific aim 13 Chapter 2. Materials and methods 14 2.1 Cells and virus 14 2.2 Western blot analysis 14 2.3 In situ staining for caspase-12 activation 15 2.4 Annexin V-FLUOS staining 15 2.5 siRNA for knockdowndown of grouper GRP78 (gGRP78) protein expression 16 2.6 Cloning of zfGRP78 and construction of EGFP-zfGRP78 fused-genes 17 2.7 Tracing of mitochondria of zfGRP78 localization in fish cells 17 2.8 Tracing of protein A localization with immunofluorescence assay 18 2.9 Immunoprecipitation assay 18 2.10 Total mRNA preparation 19 2.11 Northern blot analysis 19 2.12 Preparation of mitochondria from RGNNV-infected cells 20 2.13 Evaluation of mitochondrial membrane potential with a lipophilic cationic dye 20 2.14 Cloning and sequence analysis of RGNNV B2 21 2.15 Expression of the B2 recombinant protein 22 2.16 Preparation of a polyclonal antibody against B2 23 2.17 TdT-dUTP labeling 24 2.18 Identification of functions of EYFP-B2 fused genes in cell death 25 2.19 Plasmids construction and cell transfection 25 2.20 Immunofluorescence assay 26 2.21 Immunoelectron microscopy 27 2.22 ATP assay 27 2.23 NAD+/NADH ratio assay (Complex I activity assay) 28 2.24 Succinate dehydrogenase (SDH) activity assay (Complex II activity assay) 28 2.25 Maintenance of fish embryos in culture 29 2.26 Microinjection of EYFP and EYFP-B2 29 2.27 Apoptotic cell staining 29 2.28 Cell counts and statistical analyses 30 2.29 Selection of RGNNV B2-specific siRNA-containing cell lines 30 Chapter 3. Results 32 3.1 The molecular death mechanism of RGNNV infected cells 32 3.1.1 Does RGNNV infection activate ER stress response? 32 3.1.2 What is GRP78 role in RGNNV infection? 34 3.1.3 Does ER stress response leading to mitochondrial-mediated cell death? 39 3.1.4 Summary 42 3.2 Indentify RGNNV nonstructural proteins B2 function 44 3.2.1 Cloning of RGNNV B2 44 3.2.2 Where is RGNNV B2 localization? 44 3.2.3 What is RGNNV B2 function? 46 3.2.4 What death mechanism is induced by RGNNV B2? 48 3.2.5 What necrosis mechanism is included? 52 3.2.6 Does knockdown of RGNNV B2 affect RGNNV-induced cell death? 54 3.2.7 Summary 56 Chapter 4. Conclusion, discussion and future direction 58 4.1 Conclusion 58 4.2 Discussion 60 4.2.1 The molecular death mechanism of RGNNV infected cells 60 a. The effect of ER chaperone protein GRP78 on viral replication 60 b. Why gGRP78 interacts with RdRp at early-middle replication stage? 61 c. RGNNV-triggered ER stress signal regulates mitochondria -mediated cell death at middle replication stage 62 d. Conclusion 63 4.2.2 Indentify RGNNV nonstructural proteins B2 function 64 a. A motif of the RGNNV B2 protein is required for mitochondrial targeting during the early replication stage of infection 65 b. Protein B2 induces MMP loss and produces a mitochondrial energy crisis 66 c. Viral proteins induce mitochondrial disruption and cellular death 67 4.3 Future direction 69 4.3.1 Regulation of host death by viral anti- and pro-cell death proteins 69 4.3.2 How ER chaperon GRP78 enhance RGNNV replication? 70 4.3.3 RNAi approach may be a potential agent to control VNN disease 71 Chapter 5. Reference 74 List of figures Fig. 1. Morphological ultrastructural features of cell death by transmission electron microscopy 89 Fig. 2. Identification of RGNNV infection induces ER stress responses in fish cells 90 Fig. 3. RGNNV induces caspase-12 activation 91 Fig. 4. The percentage of caspase-12 activated cells at each time point is shown in control and RGNNV-infected cells 92 Fig. 5. Caspase 12 activated stain of RGNNV-infected GF-1 cells treated or not treated with caspase 12 inhibitor 93 Fig. 6. The percentage of caspase 12 activated cell 94 Fig. 7. Phase-contrast and fluorescence images show annexin V-labeled death cells at 48h and 72h p.i. 95 Fig. 8. The percentage of annexin V positive cells for RGNNV-infected cells treated with caspase 12 inhibitor. 96 Fig. 9. Viral protein expression pattern in infected-cells treatment with caspase 12 inhibitor 97 Fig.10. Identification of knockdown of GRP78 by siRNA affect on viral replication 98 Fig. 11. Analysis of gGRP78 expression level by Western blot analysis 99 Fig. 12. The viability of GF-1 cells infected with RGNNV with siNegative and sigGRP78 transfection 100 Fig. 13. The virus titer of GF-1 cells infected with RGNNV with siNegative and sigGRP78 transfection 101 Fig. 14. Analysis of gGRP78 expression level by Western blot analysis 102 Fig. 15. Identification of overexpression of GRP78 affect on viral replication 103 Fig. 16. The viability of EGFP and EGFP-zfGRP78 transfected GF-1 cells infected with RGNNV 104 Fig. 17. Analysis of viral titer revealed overexpression of zfGRP78 can enhance viral replication with RGNNV infection 105 Fig. 18. Tracing of zfGRP78 mitochondrial localization with RGNNV infection 106 Fig. 19. Identification of gGRP78 was targeted to the mitochondrial membrane in RGNNV infected GF-1 cells at 48 h p.i. 107 Fig. 20. Identification of zfGRP78 interacted with RGNNV RNA dependent RNA polymerase at middle replication stage 108 Fig. 21. Identification of gGRP78 interacts with RdRp (protein A) from RGNNV-infected cells 109 Fig. 22. The doses dependent of GRP78 regulates viral protein expression 110 Fig. 23. GRP78 regulates viral protein expression 111 Fig. 24. Identification of the replication ratios of RGNNV genomic RNA1 and RNA3 in RGNNV-infected GF-1 cells untreated or treated with VT 112 Fig. 25. The virus titer of GF-1 cells infected with RGNNV with VT treatment 113 Fig. 26. sigGRP78 block GRP78 synthesis, reduce viral protein expression and reverses Bcl-2 down-regulation at a middle-late replication stage 114 Fig. 27. VT block GRP78 synthesis, reduce viral protein expression and reverses Bcl-2 down-regulation at a middle-late replication stage 115 Fig. 28. GRP78-mediated ER stress signal induces mitochondrial-mediated cell death 116 Fig. 29. The percentage of MMP loss cells for RGNNV-infected cells 117 Fig. 30. Blockage of GRP78-mediated ER stress can inhibit caspase-12 activation at middle replication stage 118 Fig. 31. Identification of VT (1μg/mL) treatment can block caspase-12 cleavage from pro-caspase-12 at 48 h pi. as determined by Western blot analysis 119 Fig. 32. Identification of VT treatment can block caspase-12 activity 120 Fig. 33. The viability of negative control, RGNNV-infected and VT-treated plus RGNNV-infected cells was determined at 48 h pi in triplicate 121 Fig. 34. RGNNV induces an ER stress-mediated cell death cascade 122 Fig. 35. Cloning and identification of RGNNV B2 as an early expression gene in fish liver cells 123 Fig. 36. Identification of RGNNV protein B2 as an early expression protein and its localization during infection in fish cells 124 Fig. 37. EYFG-B2 fused protein (traced directly, by immuno EM, and by MitoTracker dye) was identified as a hydrophobic mitochondrial targeting protein in GF-1 cells 125 Fig. 38. Identification of the different mutant forms of protein B2 and their localization in GF-1 cells 126 Fig. 39. The B2 protein induces the apoptotic cell death in fish cells 128 Fig. 40. Determination of whether B2 induces post-apoptotic necrotic cells in GL-av cells 129 Fig. 41. Protein B2 in mitochondria induces cell death 130 Fig. 42. B2 upregulates the pro-apoptotic gene Bax in fish cells 131 Fig. 43. B2 protein induces loss of MMP in GL-av cells independent of cytochrome c release 132 Fig. 44. Protein B2 in mitochondria induces MMP loss 133 Fig. 45. zfBcl-xL blocked B2-induced mitochondrial disruption in fish cells 134 Fig. 46. Protein B2 in mitochondria can cause ATP depletion through inhibiting complex II activity 135 Fig. 47. Protein B2 induces ATP-depletion and death of zebrafish embryos 136 Fig. 48. Effective B2 knockdown following RGNNV infection was correlated with down regulation of Bax and prevention of PS exposure in fish cells 138 Fig. 49. Effective knockdown of B2 with RGNNV infection is correlated with prevention of the loss of MMP in fish cells 140 Fig. 50. A schematic illustrating our hypothesis of protein B2-induced necrotic death in RGNNV-infected or B2-transfected cells 141 List of table Table. 1. The RGNNV B2 sequence primers used in this study 142

    1. Bovo G, Nishizawa T, Maltese C, Borghesan F, Mutinelli F, Montesi F, & De Mas S (1999) Viral encephalopathy and retinopathy of farmed marine fish species in Italy Virus Res 63,143-146
    2. Yoshikoshi M & Osawa F (1990) Simple methods to check intraocular lenses Insight 15,19-21
    3. Glazebrook JS, Heasman, M.P., deBeer, S.W., (1990) Picorna-like viral particles associated with mass mortalities in larval barramundi, Lates calcarifer (Bloch) J. Fish Dis. 13,245-249
    4. Breuil G, Mouchel O, Fauvel C, & Pepin JF (2001) Sea bass Dicentrarchus labrax nervous necrosis virus isolates with distinct pathogenicity to sea bass larvae Dis Aquat Organ 45,25-31
    5. Bloch B, Gravningen, K., Larsen, J.L., (1991) Encephalomyelitis among turbot associated with a picornavirus-like agent. Dis. Aquat. Org. 10,65-70
    6. Mori K, Nakai, T., Nahahara, K., Muroga, K., Mekuchi, T., Kanno, T., (1991) Avirus disease in hatchery-reared larvae and juveniles of red spotted grouper Fish Pathol. 26,209-210
    7. Tan C, Huang B, Chang SF, Ngoh GH, Munday B, Chen SC, & Kwang J (2001) Determination of the complete nucleotide sequences of RNA1 and RNA2 from greasy grouper (Epinephelus tauvina) nervous necrosis virus, Singapore strain J Gen Virol 82,647-653
    8. Ball LA & Johnson KL (1999) Reverse genetics of nodaviruses Adv Virus Res 53,229-244
    9. Schneemann A, Reddy V, & Johnson JE (1998) The structure and function of nodavirus particles: a paradigm for understanding chemical biology Adv Virus Res 50,381-446
    10. Toffolo V, Negrisolo E, Maltese C, Bovo G, Belvedere P, Colombo L, & Valle LD (2007) Phylogeny of betanodaviruses and molecular evolution of their RNA polymerase and coat proteins Mol Phylogenet Evol 43,298-308
    11. Delsert C, Morin N, & Comps M (1997) A fish encephalitis virus that differs from other nodaviruses by its capsid protein processing Arch Virol 142,2359-2371
    12. Mori K, Nakai T, Muroga K, Arimoto M, Mushiake K, & Furusawa I (1992) Properties of a new virus belonging to nodaviridae found in larval striped jack (Pseudocaranx dentex) with nervous necrosis Virology 187,368-371
    13. Guo YX, Wei T, Dallmann K, & Kwang J (2003) Induction of caspase-dependent apoptosis by betanodaviruses GGNNV and demonstration of protein alpha as an apoptosis inducer Virology 308,74-82
    14. Wu HC, Chiu CS, Wu JL, Gong HY, Chen MC, Lu MW, & Hong JR (2008) Zebrafish anti-apoptotic protein zfBcl-xL can block betanodavirus protein alpha-induced mitochondria-mediated secondary necrosis cell death Fish Shellfish Immunol 24,436-449
    15. Chen LJ, Su YC, & Hong JR (2009) Betanodavirus non-structural protein B1: A novel anti-necrotic death factor that modulates cell death in early replication cycle in fish cells Virology 385,444-454
    16. Chen SP, Wu JL, Su YC, & Hong JR (2007) Anti-Bcl-2 family members, zfBcl-x(L) and zfMcl-1a, prevent cytochrome c release from cells undergoing betanodavirus-induced secondary necrotic cell death Apoptosis 12,1043-1060
    17. Fenner BJ, Goh W, & Kwang J (2006) Sequestration and protection of double-stranded RNA by the betanodavirus b2 protein J Virol 80,6822-6833
    18. Iwamoto T, Mise K, Takeda A, Okinaka Y, Mori K, Arimoto M, Okuno T, & Nakai T (2005) Characterization of Striped jack nervous necrosis virus subgenomic RNA3 and biological activities of its encoded protein B2 J Gen Virol 86,2807-2816
    19. Chen L-J, Su Y-C, & Hong J-R (2009) Betanodavirus non-structural protein B1: A novel anti-necrotic death factor that modulates cell death in early replication cycle in fish cells Virology 385,444-454
    20. Kroemer G & Levine B (2008) Autophagic cell death: the story of a misnomer Nat Rev Mol Cell Biol 9,1004-1010
    21. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nunez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, & Melino G (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009 Cell Death Differ 16,3-11
    22. Galluzzi L, Maiuri MC, Vitale I, Zischka H, Castedo M, Zitvogel L, & Kroemer G (2007) Cell death modalities: classification and pathophysiological implications Cell Death Differ 14,1237-1243
    23. Kroemer G, El-Deiry WS, Golstein P, Peter ME, Vaux D, Vandenabeele P, Zhivotovsky B, Blagosklonny MV, Malorni W, Knight RA, Piacentini M, Nagata S, & Melino G (2005) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death Cell Death Differ 12 Suppl 2,1463-1467
    24. Levine B (2007) Cell biology: autophagy and cancer Nature 446,745-747
    25. Klionsky DJ (2007) Autophagy: from phenomenology to molecular understanding in less than a decade Nat Rev Mol Cell Biol 8,931-937
    26. Kroemer G & Jaattela M (2005) Lysosomes and autophagy in cell death control Nat Rev Cancer 5,886-897
    27. Hotchkiss RS, Strasser A, McDunn JE, & Swanson PE (2009) Cell death N Engl J Med 361,1570-1583
    28. Golstein P & Kroemer G (2007) Cell death by necrosis: towards a molecular definition Trends Biochem Sci 32,37-43
    29. Festjens N, Vanden Berghe T, & Vandenabeele P (2006) Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response Biochim Biophys Acta 1757,1371-1387
    30. Malhi H, Gores GJ, & Lemasters JJ (2006) Apoptosis and necrosis in the liver: a tale of two deaths? Hepatology 43,S31-44
    31. Leist M, Single B, Castoldi AF, Kuhnle S, & Nicotera P (1997) Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis J Exp Med 185,1481-1486
    32. Harding HP, Calfon M, Urano F, Novoa I, & Ron D (2002) Transcriptional and translational control in the Mammalian unfolded protein response Annu Rev Cell Dev Biol 18,575-599
    33. Kaufman RJ, Scheuner D, Schroder M, Shen X, Lee K, Liu CY, & Arnold SM (2002) The unfolded protein response in nutrient sensing and differentiation Nat Rev Mol Cell Biol 3,411-421
    34. Li XD, Lankinen H, Putkuri N, Vapalahti O, & Vaheri A (2005) Tula hantavirus triggers pro-apoptotic signals of ER stress in Vero E6 cells Virology 333,180-189
    35. Rao RV & Bredesen DE (2004) Misfolded proteins, endoplasmic reticulum stress and neurodegeneration Curr Opin Cell Biol 16,653-662
    36. Williams BL & Lipkin WI (2006) Endoplasmic reticulum stress and neurodegeneration in rats neonatally infected with borna disease virus J Virol 80,8613-8626
    37. Chen X, Shen J, & Prywes R (2002) The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes translocation of ATF6 from the ER to the Golgi J Biol Chem 277,13045-13052
    38. Lee K, Tirasophon W, Shen X, Michalak M, Prywes R, Okada T, Yoshida H, Mori K, & Kaufman RJ (2002) IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response Genes Dev 16,452-466
    39. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, & Ron D (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response Nat Cell Biol 2,326-332
    40. Harding HP, Zhang Y, & Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase Nature 397,271-274
    41. Ye J, Rawson RB, Komuro R, Chen X, Dave UP, Prywes R, Brown MS, & Goldstein JL (2000) ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs Mol Cell 6,1355-1364
    42. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, & Ron D (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA Nature 415,92-96
    43. Davis RJ (2000) Signal transduction by the JNK group of MAP kinases Cell 103,239-252
    44. Yoneda T, Imaizumi K, Oono K, Yui D, Gomi F, Katayama T, & Tohyama M (2001) Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress J Biol Chem 276,13935-13940
    45. Baltzis D, Qu LK, Papadopoulou S, Blais JD, Bell JC, Sonenberg N, & Koromilas AE (2004) Resistance to vesicular stomatitis virus infection requires a functional cross talk between the eukaryotic translation initiation factor 2alpha kinases PERK and PKR J Virol 78,12747-12761
    46. Dimcheff DE, Faasse MA, McAtee FJ, & Portis JL (2004) Endoplasmic reticulum (ER) stress induced by a neurovirulent mouse retrovirus is associated with prolonged BiP binding and retention of a viral protein in the ER J Biol Chem 279,33782-33790
    47. Netherton CL, Parsley JC, & Wileman T (2004) African swine fever virus inhibits induction of the stress-induced proapoptotic transcription factor CHOP/GADD153 J Virol 78,10825-10828
    48. He B (2006) Viruses, endoplasmic reticulum stress, and interferon responses Cell Death Differ 13,393-403
    49. Su HL, Liao CL, & Lin YL (2002) Japanese encephalitis virus infection initiates endoplasmic reticulum stress and an unfolded protein response J Virol 76,4162-4171
    50. Tardif KD, Mori K, & Siddiqui A (2002) Hepatitis C virus subgenomic replicons induce endoplasmic reticulum stress activating an intracellular signaling pathway J Virol 76,7453-7459
    51. Bitko V & Barik S (2001) An endoplasmic reticulum-specific stress-activated caspase (caspase-12) is implicated in the apoptosis of A549 epithelial cells by respiratory syncytial virus J Cell Biochem 80,441-454
    52. Ellis RJ & van der Vies SM (1991) Molecular chaperones Annu Rev Biochem 60,321-347
    53. Hung JJ, Chung CS, & Chang W (2002) Molecular chaperone Hsp90 is important for vaccinia virus growth in cells J Virol 76,1379-1390
    54. Buchkovich NJ, Maguire TG, Yu Y, Paton AW, Paton JC, & Alwine JC (2008) Human cytomegalovirus specifically controls the levels of the endoplasmic reticulum chaperone BiP/GRP78, which is required for virion assembly J Virol 82,31-39
    55. Dufresne PJ, Thivierge K, Cotton S, Beauchemin C, Ide C, Ubalijoro E, Laliberte JF, & Fortin MG (2008) Heat shock 70 protein interaction with Turnip mosaic virus RNA-dependent RNA polymerase within virus-induced membrane vesicles Virology 374,217-227
    56. Nishikiori M, Dohi K, Mori M, Meshi T, Naito S, & Ishikawa M (2006) Membrane-bound tomato mosaic virus replication proteins participate in RNA synthesis and are associated with host proteins in a pattern distinct from those that are not membrane bound J Virol 80,8459-8468
    57. Yamaji Y, Kobayashi T, Hamada K, Sakurai K, Yoshii A, Suzuki M, Namba S, & Hibi T (2006) In vivo interaction between Tobacco mosaic virus RNA-dependent RNA polymerase and host translation elongation factor 1A Virology 347,100-108
    58. Serva S & Nagy PD (2006) Proteomics analysis of the tombusvirus replicase: Hsp70 molecular chaperone is associated with the replicase and enhances viral RNA replication J Virol 80,2162-2169
    59. Chen YB, Seo SY, Kirsch DG, Sheu TT, Cheng WC, & Hardwick JM (2006) Alternate functions of viral regulators of cell death Cell Death Differ 13,1318-1324
    60. Lewis J, Wesselingh SL, Griffin DE, & Hardwick JM (1996) Alphavirus-induced apoptosis in mouse brains correlates with neurovirulence J Virol 70,1828-1835
    61. Colon-Ramos DA, Irusta PM, Gan EC, Olson MR, Song J, Morimoto RI, Elliott RM, Lombard M, Hollingsworth R, Hardwick JM, Smith GK, & Kornbluth S (2003) Inhibition of translation and induction of apoptosis by Bunyaviral nonstructural proteins bearing sequence similarity to reaper Mol Biol Cell 14,4162-4172
    62. Liu Y, Schiff M, Czymmek K, Talloczy Z, Levine B, & Dinesh-Kumar SP (2005) Autophagy regulates programmed cell death during the plant innate immune response Cell 121,567-577
    63. Roulston A, Marcellus RC, & Branton PE (1999) Viruses and apoptosis Annu Rev Microbiol 53,577-628
    64. Everett H & McFadden G (1999) Apoptosis: an innate immune response to virus infection Trends Microbiol 7,160-165
    65. Jacotot E, Ferri KF, El Hamel C, Brenner C, Druillennec S, Hoebeke J, Rustin P, Metivier D, Lenoir C, Geuskens M, Vieira HL, Loeffler M, Belzacq AS, Briand JP, Zamzami N, Edelman L, Xie ZH, Reed JC, Roques BP, & Kroemer G (2001) Control of mitochondrial membrane permeabilization by adenine nucleotide translocator interacting with HIV-1 viral protein rR and Bcl-2 J Exp Med 193,509-519
    66. Takada S, Shirakata Y, Kaneniwa N, & Koike K (1999) Association of hepatitis B virus X protein with mitochondria causes mitochondrial aggregation at the nuclear periphery, leading to cell death Oncogene 18,6965-6973
    67. Henkler F, Hoare J, Waseem N, Goldin RD, McGarvey MJ, Koshy R, & King IA (2001) Intracellular localization of the hepatitis B virus HBx protein J Gen Virol 82,871-882
    68. Gibbs JS, Malide D, Hornung F, Bennink JR, & Yewdell JW (2003) The influenza A virus PB1-F2 protein targets the inner mitochondrial membrane via a predicted basic amphipathic helix that disrupts mitochondrial function J Virol 77,7214-7224
    69. Chanturiya AN, Basanez G, Schubert U, Henklein P, Yewdell JW, & Zimmerberg J (2004) PB1-F2, an influenza A virus-encoded proapoptotic mitochondrial protein, creates variably sized pores in planar lipid membranes J Virol 78,6304-6312
    70. Zamarin D, Garcia-Sastre A, Xiao X, Wang R, & Palese P (2005) Influenza virus PB1-F2 protein induces cell death through mitochondrial ANT3 and VDAC1 PLoS Pathog 1,e4
    71. Laforge M, Petit F, Estaquier J, & Senik A (2007) Commitment to apoptosis in CD4(+) T lymphocytes productively infected with human immunodeficiency virus type 1 is initiated by lysosomal membrane permeabilization, itself induced by the isolated expression of the viral protein Nef J Virol 81,11426-11440
    72. Rasola A, Gramaglia D, Boccaccio C, & Comoglio PM (2001) Apoptosis enhancement by the HIV-1 Nef protein J Immunol 166,81-88
    73. Castedo M, Ferri KF, Blanco J, Roumier T, Larochette N, Barretina J, Amendola A, Nardacci R, Metivier D, Este JA, Piacentini M, & Kroemer G (2001) Human immunodeficiency virus 1 envelope glycoprotein complex-induced apoptosis involves mammalian target of rapamycin/FKBP12-rapamycin-associated protein-mediated p53 phosphorylation J Exp Med 194,1097-1110
    74. Perfettini JL, Roumier T, Castedo M, Larochette N, Boya P, Raynal B, Lazar V, Ciccosanti F, Nardacci R, Penninger J, Piacentini M, & Kroemer G (2004) NF-kappaB and p53 are the dominant apoptosis-inducing transcription factors elicited by the HIV-1 envelope J Exp Med 199,629-640
    75. Castedo M, Roumier T, Blanco J, Ferri KF, Barretina J, Tintignac LA, Andreau K, Perfettini JL, Amendola A, Nardacci R, Leduc P, Ingber DE, Druillennec S, Roques B, Leibovitch SA, Vilella-Bach M, Chen J, Este JA, Modjtahedi N, Piacentini M, & Kroemer G (2002) Sequential involvement of Cdk1, mTOR and p53 in apoptosis induced by the HIV-1 envelope EMBO J 21,4070-4080
    76. Macho A, Calzado MA, Jimenez-Reina L, Ceballos E, Leon J, & Munoz E (1999) Susceptibility of HIV-1-TAT transfected cells to undergo apoptosis. Biochemical mechanisms Oncogene 18,7543-7551
    77. Chiu CL, Wu JL, Her GM, Chou YL, & Hong JR (2010) Aquatic birnavirus capsid protein, VP3, induces apoptosis via the Bad-mediated mitochondria pathway in fish and mouse cells Apoptosis
    78. Prikhod'ko EA, Prikhod'ko GG, Siegel RM, Thompson P, Major ME, & Cohen JI (2004) The NS3 protein of hepatitis C virus induces caspase-8-mediated apoptosis independent of its protease or helicase activities Virology 329,53-67
    79. Calandria C, Irurzun A, Barco A, & Carrasco L (2004) Individual expression of poliovirus 2Apro and 3Cpro induces activation of caspase-3 and PARP cleavage in HeLa cells Virus Res 104,39-49
    80. Altmann M & Hammerschmidt W (2005) Epstein-Barr virus provides a new paradigm: a requirement for the immediate inhibition of apoptosis PLoS Biol 3,e404
    81. Han J, Sabbatini P, Perez D, Rao L, Modha D, & White E (1996) The E1B 19K protein blocks apoptosis by interacting with and inhibiting the p53-inducible and death-promoting Bax protein Genes Dev 10,461-477
    82. Han J, Modha D, & White E (1998) Interaction of E1B 19K with Bax is required to block Bax-induced loss of mitochondrial membrane potential and apoptosis Oncogene 17,2993-3005
    83. Cuconati A, Degenhardt K, Sundararajan R, Anschel A, & White E (2002) Bak and Bax function to limit adenovirus replication through apoptosis induction J Virol 76,4547-4558
    84. Hong JR, Gong HY, & Wu JL (2002) IPNV VP5, a novel anti-apoptosis gene of the Bcl-2 family, regulates Mcl-1 and viral protein expression Virology 295,217-229
    85. Lin JG, Zhang CX, & Suzuki S (2005) An anti-apoptosis gene of the Bcl-2 family from Marine Birnavirus inhibiting apoptosis of insect cells infected with baculovirus Virus Genes 31,185-193
    86. Banadyga L, Gerig J, Stewart T, & Barry M (2007) Fowlpox virus encodes a Bcl-2 homologue that protects cells from apoptotic death through interaction with the proapoptotic protein Bak J Virol 81,11032-11045
    87. Westphal D, Ledgerwood EC, Hibma MH, Fleming SB, Whelan EM, & Mercer AA (2007) A novel Bcl-2-like inhibitor of apoptosis is encoded by the parapoxvirus ORF virus J Virol 81,7178-7188
    88. Goldmacher VS, Bartle LM, Skaletskaya A, Dionne CA, Kedersha NL, Vater CA, Han JW, Lutz RJ, Watanabe S, Cahir McFarland ED, Kieff ED, Mocarski ES, & Chittenden T (1999) A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2 Proc Natl Acad Sci U S A 96,12536-12541
    89. Erdtmann L, Franck N, Lerat H, Le Seyec J, Gilot D, Cannie I, Gripon P, Hibner U, & Guguen-Guillouzo C (2003) The hepatitis C virus NS2 protein is an inhibitor of CIDE-B-induced apoptosis J Biol Chem 278,18256-18264
    90. Waris G, Tardif KD, & Siddiqui A (2002) Endoplasmic reticulum (ER) stress: hepatitis C virus induces an ER-nucleus signal transduction pathway and activates NF-kappaB and STAT-3 Biochem Pharmacol 64,1425-1430
    91. Clem RJ, Fechheimer M, & Miller LK (1991) Prevention of apoptosis by a baculovirus gene during infection of insect cells Science 254,1388-1390
    92. dela Cruz WP, Friesen PD, & Fisher AJ (2001) Crystal structure of baculovirus P35 reveals a novel conformational change in the reactive site loop after caspase cleavage J Biol Chem 276,32933-32939
    93. Clem RJ (2001) Baculoviruses and apoptosis: the good, the bad, and the ugly Cell Death Differ 8,137-143
    94. Beidler DR, Tewari M, Friesen PD, Poirier G, & Dixit VM (1995) The baculovirus p35 protein inhibits Fas- and tumor necrosis factor-induced apoptosis J Biol Chem 270,16526-16528
    95. Hisahara S, Araki T, Sugiyama F, Yagami K, Suzuki M, Abe K, Yamamura K, Miyazaki J, Momoi T, Saruta T, Bernard CC, Okano H, & Miura M (2000) Targeted expression of baculovirus p35 caspase inhibitor in oligodendrocytes protects mice against autoimmune-mediated demyelination EMBO J 19,341-348
    96. Hay BA, Wolff T, & Rubin GM (1994) Expression of baculovirus P35 prevents cell death in Drosophila Development 120,2121-2129
    97. Sahdev S, Taneja TK, Mohan M, Sah NK, Khar AK, Hasnain SE, & Athar M (2003) Baculoviral p35 inhibits oxidant-induced activation of mitochondrial apoptotic pathway Biochem Biophys Res Commun 307,483-490
    98. Chen SP, Yang HL, Her GM, Lin HY, Jeng MF, Wu JL, & Hong JR (2006) Betanodavirus induces phosphatidylserine exposure and loss of mitochondrial membrane potential in secondary necrotic cells, both of which are blocked by bongkrekic acid Virology 347,379-391
    99. Wang XH, Aliyari R, Li WX, Li HW, Kim K, Carthew R, Atkinson P, & Ding SW (2006) RNA interference directs innate immunity against viruses in adult Drosophila Science 312,452-454
    100. Li H, Li WX, & Ding SW (2002) Induction and suppression of RNA silencing by an animal virus Science 296,1319-1321
    101. Lu R, Maduro M, Li F, Li HW, Broitman-Maduro G, Li WX, & Ding SW (2005) Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans Nature 436,1040-1043
    102. Nicholson BL & Dunn J (1974) Homologous viral interference in trout and Atlantic salmon cell cultures infected with infectious pancreatic necrosis virus J Virol 14,180-182
    103. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4 Nature 227,680-685
    104. Kain SR, Mai K, & Sinai P (1994) Human multiple tissue western blots: a new immunological tool for the analysis of tissue-specific protein expression Biotechniques 17,982-987
    105. Su YC, Wu JL, & Hong JR (2009) Betanodavirus non-structural protein B2: A novel necrotic death factor that induces mitochondria-mediated cell death in fish cells Virology 385,143-154
    106. Hong JR & Wu JL (2002) Induction of apoptotic death in cells via Bad gene expression by infectious pancreatic necrosis virus infection Cell Death Differ 9,113-124
    107. Holtke HJ, Ankenbauer W, Muhlegger K, Rein R, Sagner G, Seibl R, & Walter T (1995) The digoxigenin (DIG) system for non-radioactive labelling and detection of nucleic acids--an overview Cell Mol Biol (Noisy-le-grand) 41,883-905
    108. Chen SP, Yang HL, Lin HY, Chen MC, Wu JL, & Hong JR (2006) Enhanced viability of a nervous necrosis virus-infected stable cell line over-expressing a fusion product of the zfBcl-xL and green fluorescent protein genes J Fish Dis 29,347-354
    109. Lellouch AC & Geremia RA (1999) Expression and study of recombinant ExoM, a beta1-4 glucosyltransferase involved in succinoglycan biosynthesis in Sinorhizobium meliloti J Bacteriol 181,1141-1148
    110. Das M, Ganguly T, Chattoraj P, Chanda PK, Bandhu A, Lee CY, & Sau S (2007) Purification and characterization of repressor of temperate S. aureus phage phi11 J Biochem Mol Biol 40,740-748
    111. Hong JC, Hong TH, Chang JG, & Chang TH (1993) Production and characterization of monoclonal antibodies against alpha and beta spectrin subunits J Formos Med Assoc 92,61-67
    112. Hong JR, Lin TL, Hsu YL, & Wu JL (1998) Apoptosis precedes necrosis of fish cell line with infectious pancreatic necrosis virus infection Virology 250,76-84
    113. Green JD & Narahara HT (1980) Assay of succinate dehydrogenase activity by the tetrazolium method: evaluation of an improved technique in skeletal muscle fractions J Histochem Cytochem 28,408-412
    114. Hong JR, Lin GH, Lin CJ, Wang WP, Lee CC, Lin TL, & Wu JL (2004) Phosphatidylserine receptor is required for the engulfment of dead apoptotic cells and for normal embryonic development in zebrafish Development 131,5417-5427
    115. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, & Schilling TF (1995) Stages of embryonic development of the zebrafish Dev Dyn 203,253-310
    116. Ekker SC, Ungar AR, Greenstein P, von Kessler DP, Porter JA, Moon RT, & Beachy PA (1995) Patterning activities of vertebrate hedgehog proteins in the developing eye and brain Curr Biol 5,944-955
    117. Mezeth KB, Nylund S, Henriksen H, Patel S, Nerland AH, & Szilvay AM (2007) RNA-dependent RNA polymerase from Atlantic halibut nodavirus contains two signals for localization to the mitochondria Virus Res 130,43-52
    118. Miller DJ & Ahlquist P (2002) Flock house virus RNA polymerase is a transmembrane protein with amino-terminal sequences sufficient for mitochondrial localization and membrane insertion J Virol 76,9856-9867
    119. Van Wynsberghe PM & Ahlquist P (2009) 5' cis elements direct nodavirus RNA1 recruitment to mitochondrial sites of replication complex formation J Virol 83,2976-2988
    120. Yang GH, Li S, & Pestka JJ (2000) Down-regulation of the endoplasmic reticulum chaperone GRP78/BiP by vomitoxin (Deoxynivalenol) Toxicol Appl Pharmacol 162,207-217
    121. Zamzami N & Kroemer G (2001) The mitochondrion in apoptosis: how Pandora's box opens Nat Rev Mol Cell Biol 2,67-71
    122. Falquet L, Pagni M, Bucher P, Hulo N, Sigrist CJ, Hofmann K, & Bairoch A (2002) The PROSITE database, its status in 2002 Nucleic Acids Res 30,235-238
    123. Newton K & Strasser A (1998) The Bcl-2 family and cell death regulation Curr Opin Genet Dev 8,68-75
    124. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, & Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells Nature 411,494-498
    125. Kunath T, Gish G, Lickert H, Jones N, Pawson T, & Rossant J (2003) Transgenic RNA interference in ES cell-derived embryos recapitulates a genetic null phenotype Nat Biotechnol 21,559-561
    126. McCaffrey AP, Meuse L, Pham TT, Conklin DS, Hannon GJ, & Kay MA (2002) RNA interference in adult mice Nature 418,38-39
    127. Tanaka S, Kuriyama I, Nakai T, & Miyazaki T (2003) Susceptibility of cultured juveniles of several marine fish to the sevenband grouper nervous necrosis virus J Fish Dis 26,109-115
    128. Mazzarella RA, Marcus N, Haugejorden SM, Balcarek JM, Baldassare JJ, Roy B, Li LJ, Lee AS, & Green M (1994) Erp61 is GRP58, a stress-inducible luminal endoplasmic reticulum protein, but is devoid of phosphatidylinositide-specific phospholipase C activity Arch Biochem Biophys 308,454-460
    129. Pahl HL (1999) Signal transduction from the endoplasmic reticulum to the cell nucleus Physiol Rev 79,683-701
    130. Rutkowski DT & Kaufman RJ (2004) A trip to the ER: coping with stress Trends Cell Biol 14,20-28
    131. Lamkanfi M, Kalai M, & Vandenabeele P (2004) Caspase-12: an overview Cell Death Differ 11,365-368
    132. Oyadomari S & Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress Cell Death Differ 11,381-389
    133. Miller DJ, Schwartz MD, & Ahlquist P (2001) Flock house virus RNA replicates on outer mitochondrial membranes in Drosophila cells J Virol 75,11664-11676
    134. Weeks SA, Shield WP, Sahi C, Craig EA, Rospert S, & Miller DJ (2010) A targeted analysis of cellular chaperones reveals contrasting roles for heat shock protein 70 in flock house virus RNA replication J Virol 84,330-339
    135. Germain M, Mathai JP, & Shore GC (2002) BH-3-only BIK functions at the endoplasmic reticulum to stimulate cytochrome c release from mitochondria J Biol Chem 277,18053-18060
    136. Rao RV, Ellerby HM, & Bredesen DE (2004) Coupling endoplasmic reticulum stress to the cell death program Cell Death Differ 11,372-380
    137. Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T, & Korsmeyer SJ (2003) BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis Science 300,135-139
    138. Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, & Korsmeyer SJ (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death Science 292,727-730
    139. Galluzzi L, Brenner C, Morselli E, Touat Z, & Kroemer G (2008) Viral control of mitochondrial apoptosis PLoS Pathog 4,e1000018
    140. Neupert W (1997) Protein import into mitochondria Annu Rev Biochem 66,863-917
    141. Voos W, Martin H, Krimmer T, & Pfanner N (1999) Mechanisms of protein translocation into mitochondria Biochim Biophys Acta 1422,235-254
    142. Mokranjac D & Neupert W (2008) Energetics of protein translocation into mitochondria Biochim Biophys Acta 1777,758-762
    143. Komiya T, Rospert S, Koehler C, Looser R, Schatz G, & Mihara K (1998) Interaction of mitochondrial targeting signals with acidic receptor domains along the protein import pathway: evidence for the 'acid chain' hypothesis Embo J 17,3886-3898
    144. Anandatheerthavarada HK, Biswas G, Mullick J, Sepuri NB, Otvos L, Pain D, & Avadhani NG (1999) Dual targeting of cytochrome P4502B1 to endoplasmic reticulum and mitochondria involves a novel signal activation by cyclic AMP-dependent phosphorylation at ser128 Embo J 18,5494-5504
    145. Neve EP & Ingelman-Sundberg M (2001) Identification and characterization of a mitochondrial targeting signal in rat cytochrome P450 2E1 (CYP2E1) J Biol Chem 276,11317-11322
    146. Rehling P, Pfanner N, & Meisinger C (2003) Insertion of hydrophobic membrane proteins into the inner mitochondrial membrane--a guided tour J Mol Biol 326,639-657
    147. Robin MA, Anandatheerthavarada HK, Biswas G, Sepuri NB, Gordon DM, Pain D, & Avadhani NG (2002) Bimodal targeting of microsomal CYP2E1 to mitochondria through activation of an N-terminal chimeric signal by cAMP-mediated phosphorylation J Biol Chem 277,40583-40593
    148. Roise D (1997) Recognition and binding of mitochondrial presequences during the import of proteins into mitochondria J Bioenerg Biomembr 29,19-27
    149. Yamada H, Chounan R, Higashi Y, Kurihara N, & Kido H (2004) Mitochondrial targeting sequence of the influenza A virus PB1-F2 protein and its function in mitochondria FEBS Lett 578,331-336
    150. Boveris A, Oshino N, & Chance B (1972) The cellular production of hydrogen peroxide Biochem J 128,617-630
    151. de Castro IP, Martins LM, & Tufi R (2010) Mitochondrial quality control and neurological disease: an emerging connection Expert Rev Mol Med 12,e12
    152. Valmas N, Zuryn S, & Ebert PR (2008) Mitochondrial uncouplers act synergistically with the fumigant phosphine to disrupt mitochondrial membrane potential and cause cell death Toxicology 252,33-39
    153. Furuya T, Hayakawa H, Yamada M, Yoshimi K, Hisahara S, Miura M, Mizuno Y, & Mochizuki H (2004) Caspase-11 mediates inflammatory dopaminergic cell death in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease J Neurosci 24,1865-1872
    154. Kroemer G & Blomgren K (2007) Mitochondrial cell death control in familial Parkinson disease PLoS Biol 5,e206
    155. Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, & Reddy PH (2006) Mitochondria are a direct site of A beta accumulation in Alzheimer's disease neurons: implications for free radical generation and oxidative damage in disease progression Hum Mol Genet 15,1437-1449
    156. Ohyagi Y, Asahara H, Chui DH, Tsuruta Y, Sakae N, Miyoshi K, Yamada T, Kikuchi H, Taniwaki T, Murai H, Ikezoe K, Furuya H, Kawarabayashi T, Shoji M, Checler F, Iwaki T, Makifuchi T, Takeda K, Kira J, & Tabira T (2005) Intracellular Abeta42 activates p53 promoter: a pathway to neurodegeneration in Alzheimer's disease FASEB J 19,255-257
    157. Reddy PH (2009) Role of mitochondria in neurodegenerative diseases: mitochondria as a therapeutic target in Alzheimer's disease CNS Spectr 14,8-13; discussion 16-18
    158. Reddy PH (2009) Amyloid beta, mitochondrial structural and functional dynamics in Alzheimer's disease Exp Neurol 218,286-292
    159. Reddy PH & McWeeney S (2006) Mapping cellular transcriptosomes in autopsied Alzheimer's disease subjects and relevant animal models Neurobiol Aging 27,1060-1077
    160. Reddy PH, Mao P, & Manczak M (2009) Mitochondrial structural and functional dynamics in Huntington's disease Brain Res Rev 61,33-48
    161. Kuczynski B & Reo NV (2006) Evidence that plasmalogen is protective against oxidative stress in the rat brain Neurochem Res 31,639-656
    162. Nomura-Takigawa Y, Nagano-Fujii M, Deng L, Kitazawa S, Ishido S, Sada K, & Hotta H (2006) Non-structural protein 4A of Hepatitis C virus accumulates on mitochondria and renders the cells prone to undergoing mitochondria-mediated apoptosis J Gen Virol 87,1935-1945
    163. Li CJ, Friedman DJ, Wang C, Metelev V, & Pardee AB (1995) Induction of apoptosis in uninfected lymphocytes by HIV-1 Tat protein Science 268,429-431
    164. Horng-Cherng Wu J-LW, Heuy-Ling Chu, Yu-Chin Su, Jiann-Ruey Hong (2010) RGNNV induces mitochondria-mediated cell death via newly synthesized protein dependent pathway in fish cells Fish Shellfish Immunol 1-13
    165. Yoshida M (2001) Multiple viral strategies of HTLV-1 for dysregulation of cell growth control Annu Rev Immunol 19,475-496
    166. Seet BT, Johnston JB, Brunetti CR, Barrett JW, Everett H, Cameron C, Sypula J, Nazarian SH, Lucas A, & McFadden G (2003) Poxviruses and immune evasion Annu Rev Immunol 21,377-423
    167. Benedict CA, Norris PS, & Ware CF (2002) To kill or be killed: viral evasion of apoptosis Nat Immunol 3,1013-1018
    168. Mackenzie JM, Jones MK, & Westaway EG (1999) Markers for trans-Golgi membranes and the intermediate compartment localize to induced membranes with distinct replication functions in flavivirus-infected cells J Virol 73,9555-9567
    169. Restrepo-Hartwig M & Ahlquist P (1999) Brome mosaic virus RNA replication proteins 1a and 2a colocalize and 1a independently localizes on the yeast endoplasmic reticulum J Virol 73,10303-10309
    170. Van Der Heijden MW, Carette JE, Reinhoud PJ, Haegi A, & Bol JF (2001) Alfalfa mosaic virus replicase proteins P1 and P2 interact and colocalize at the vacuolar membrane J Virol 75,1879-1887
    171. Froshauer S, Kartenbeck J, & Helenius A (1988) Alphavirus RNA replicase is located on the cytoplasmic surface of endosomes and lysosomes J Cell Biol 107,2075-2086
    172. Guo YX, Chan SW, & Kwang J (2004) Membrane association of greasy grouper nervous necrosis virus protein A and characterization of its mitochondrial localization targeting signal J Virol 78,6498-6508
    173. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, & Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans Nature 391,806-811
    174. Chen Y, Cheng G, & Mahato RI (2008) RNAi for treating hepatitis B viral infection Pharm Res 25,72-86
    175. McCaffrey AP, Nakai H, Pandey K, Huang Z, Salazar FH, Xu H, Wieland SF, Marion PL, & Kay MA (2003) Inhibition of hepatitis B virus in mice by RNA interference Nat Biotechnol 21,639-644
    176. Kapadia SB, Brideau-Andersen A, & Chisari FV (2003) Interference of hepatitis C virus RNA replication by short interfering RNAs Proc Natl Acad Sci U S A 100,2014-2018
    177. Wilson JA, Jayasena S, Khvorova A, Sabatinos S, Rodrigue-Gervais IG, Arya S, Sarangi F, Harris-Brandts M, Beaulieu S, & Richardson CD (2003) RNA interference blocks gene expression and RNA synthesis from hepatitis C replicons propagated in human liver cells Proc Natl Acad Sci U S A 100,2783-2788
    178. Coburn GA & Cullen BR (2002) Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference J Virol 76,9225-9231

    無法下載圖示 校內:2015-07-24公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE