簡易檢索 / 詳目顯示

研究生: 張耀文
Jang, Yaw-Wen
論文名稱: 共溶劑修飾主動層的形態學對高分子混合型異質接面太陽能電池的影響研究
Mixed solvents for active-layer morphological modifications of polymer bulk heterojunction solar cells
指導教授: 鄭弘隆
Cheng, Horng-Long
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 113
中文關鍵詞: 有機太陽能電池聚(3-己烷基噻吩)碳六十衍生物有效共軛鏈長混溶劑
外文關鍵詞: Organic solar cells, Poly (3-hexylthiophene), Fullerene, Effective Conjugation length, Mixed solvents
相關次數: 點閱:94下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討以非溶解性溶劑和溶解性溶劑作為的混溶劑對薄膜結構及其相對應有機太陽能電池的電特性之影響,其中太陽能電池元件以聚(3-己烷基噻吩)(poly(3- hexy lthiophene), P3HT)和碳六十衍生物([6,6]-phenyl-C61-butyric acid meth yl ester, PCBM)為主動層材料。本研究選擇醇類作為非溶解性溶劑,氯仿(CF)為溶解性溶劑,其中醇類選用乙醇(低沸點醇類)和正丁醇(高沸點醇類),藉由摻入不同比例的醇類於CF中製備P3HT:PCBM的薄膜,搭配吸收光譜儀、拉曼光譜儀、 X光繞射儀和原子力顯微鏡對薄膜進行相關分析,並進一步分析其相對應太陽能電池元件的電特性。
    由吸收光譜和拉曼光譜的分析可發現,摻入乙醇或正丁醇於CF後, P3HT結晶區域的有效共軛鏈長皆有明顯變長、結晶區域的比例明顯增加和P3HT結晶區域的均勻性也獲得提升;在原子力顯微鏡下可觀察到,P3HT和PCBM出現明顯的相分離,使得P3HT區塊明顯的變大。另外,原子力顯微鏡下也可觀察到,P3HT區塊間也有較明顯的聯繫。元件電性結果顯示,元件電性結果顯示,當摻入乙醇的比例為8 v%時,FF值由0.44提升至0.59,而當摻入較小比例的正丁醇後,其FF值也同樣有明顯的提升。綜合薄膜分析與電性結果可知,摻入醇類可有效的調整薄膜結構,在主動層內產生一個有利載子傳輸的路徑,減少載子在傳輸過程的損耗,進而提升有機太陽能電池的FF值。
    本研究也比較了摻和不同的醇類(乙醇和正丁醇)對於對薄膜結構及其有機太陽能電池電特性的影響。從相關的薄膜分析結果及電性結果顯示,相對於相同比例的乙醇,正丁醇的摻入對於P3HT:PCBM的薄膜結構上的改變影響較大,推測可能由於旋轉塗佈主動層材料的過程中,醇類在溶劑中所佔的體積百分受到沸點高低的影響而改變。

    The influence of the mixture of good and poor solvents for preparing the active layers of poly(3-hexylthiophene) (P3HT):fullerene derivative [i.e., [6,6]-phenyl-C61-butyric acid methyl ester (PCBM)] on the photovoltaic properties of polymer bulk heterojunction (BHJ) solar cells were investigated. Chloroform and alcohol were chosen as the good and poor solvents, respectively. Two types of alcohols were used, namely, ethanol with a low boiling point (bp) and butanol with a high bp. The different amounts of alcohol were introduced into the chloroform to prepare the P3HT:PCBM blending films. The active layers were studied by absorption spectroscopy, Raman spectroscopy, X-ray diffraction, and atomic force microscopy (AFM). The correlation between the microstructural properties of the active layers and photovoltaic properties of the polymer BHJ solar cells was also examined.
    With regard to the microstructural studies on P3HT:PCBM blending films, the absorption and Raman spectroscopy results revealed that incorporating ethanol or butanol into chloroform resulted in a significantly longer effective conjugation length (Leff) of the P3HT chains in the crystalline region, considerable increases in the proportion of crystalline regions, and improved uniformity of the P3HT crystalline region. AFM analysis results suggest significant phase separation between P3HT and PCBM, and a larger P3HT grain. For the photovoltaic properties, the fill factor (FF) value particularly improved from 0.45 to 0.59 when 8 v% ethanol was incorporated into the chloroform. The improved FF value was also observed in the chloroform:butanol cases when a smaller proportion of butanol was introduced. In summary, incorporating alcohols into the chloroform effectively adjusted the structure of the active layers, thereby providing better pathways for reducing the loss of charge carriers during transportation and raising the FF value of polymeric BHJ solar cells.
    Finally, this study investigated the effect of incorporating different alcohols into the chloroform on the active layer structure of P3HT:PCBM and the photovoltaic properties of BHJ solar cells. We found that butanol addition into the chloroform imposed a more substantial effect on the microstructure than did ethanol addition. We propose that the bp of alcohols plays an important role in the formation of the active layer microstructure during spin coating.

    中文摘要...................................................Ⅰ Abstract..................................................Ⅲ 誌謝......................................................Ⅴ 目錄......................................................Ⅵ 表目錄.....................................................Ⅸ 圖目錄...................................................XII 第一章 緒論...............................................1 1-1 前言...................................................1 1-2有機太陽能電池的發展......................................2 1-3研究動機................................................7 第二章 有機太陽能電池的工作原理..............................9 2-1 有機太陽能電池運作機制...................................9 2-2 有機太陽能電池的等效電路.................................12 2-3 有機太陽能電池的特性參數.................................14 2-3-1 短路電流.............................................14 2-3-2 開路電壓.............................................15 2-3-3 填充因子.............................................15 2-3-4 轉換效率.............................................15 2-4 太陽光頻譜.............................................16 第三章 實驗方法及步驟.......................................21 3-1 實驗材料...............................................21 3-2 元件製作流程........................................................24 3-2-1 主動層溶劑配製.......................................24 3-2-2 元件製程........................................................24 3-3 實驗儀器...............................................28 3-3-1 元件電性量測儀器......................................28 3-3-2 紫外-可見光分光光譜儀 (吸收光譜儀).....................29 3-3-3 微拉曼光譜儀.........................................29 3-3-4 X光繞射光譜儀........................................29 3-3-5原子力顯微鏡..........................................30 第四章 主要溶劑中摻入醇類對主動層結構與相對應有機太陽能電池電特性影響之研究...................................................33 4-1 前言..................................................33 4-2 紫外-可見光分光光譜儀分析................................36 4-3 微拉曼光譜儀分析........................................40 4-4 X光繞射光譜儀分析.......................................44 4-5 原子力顯微鏡表面結構形態分析.............................46 4-6 元件電特性分析.........................................48 第五章 總結.............................................105 參考文獻..................................................108

    [1] D. M. Chapin, C. S. Fuller and G. L. Pearson, “A new silicon p-njunction photocell for converting solar radiation into electrical power”, J. Appl. Phys., 25, 676, 1954.

    [2] K. H and P. M, J. Phys. Chem., 30, 585, 1959.

    [3] C. W. Tang, “Two-layer organic photovoltaic cell”, Appl. Phys. Lett., 48, 183, 1986.

    [4] N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene” , Science, 258, 1474, 1992.

    [5] G. Yu, J. Gao, J. Hummelen, F. Wudl and A. J. Heeger, “Polymer photovoltaic cells: Enhanced efficiencies via a network of a internal
    donor-acceptor heterojunctions”, Science, 270, 1789, 1995.

    [6] J. J. M. Halls, C. A. Walsh, N. C. Greenham , E. A. Marseglia ,R. H. Friend, S. C. Moratti and A. B. Holmes, “Efficient photodiodes from interpenetrating polymer networks” , Nature, 376, 1995.

    [7] S. E. Shaheen, C. J. Brabec and N. S. Sariciftci, “2.5% efficient organic plastic solar cells”, Appl. Phys. Lett., 78, 841, 2001.

    [8] F. Padinger, R. S. Rittberger and N. S. Sariciftci, “Effects of postproduction treatment on plastic solar cell”, Adv. Funct. Mater., 13, 85, 2003.

    [9] W. Ma, C. Yang, X. Gong, K. Lee and A. J. Heeger, “Thermally stable efficient polymer solar cells with nanoscale control of the interpenetrating network morphology” , Adv. Funct. Mater., 15,1617, 2005.
    [10] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heegerand G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols”, Nat. Mater. , 6, 497, 2007.

    [11] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T-Q. Nguyen, M. Dante, A. J. Heeger, “ Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing”, Science , 317, 222, 2007.

    [12] H.-Y. Chen, J. Hou1, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency”, Nat. Photonics, 3, 649, 2009.

    [13] See for instance http://www.heliatek.com/

    [14] P. G. Nicholson and F. A. Castro, “Organic photovoltaics: principles and techniques for nanometre scale characterization ”, Nanotechnology, 21, 492001, 2010.

    [15] S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon,D. Moses, M. Leclerc, K. Lee1, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%”, Nat. Photonics, 3, 2009.

    [16] J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong,and A. J. Heeger, “New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer”, Adv. Mater., 18, 572–576, 2006.

    [17] K. Hummer, C. Ambrosch-Draxl, G. Bussi, A. Ruini, M. J. Caldas, E. Molinari, R. Laskowski, and N. E. Christensen, “Ab-initio study of excitonic effects in conventional and organic semiconductors” , Phys. Stat. Sol. (b), 1–5, 2005

    [18] D. E. Markov, C. Tanase, P. W. M. Blom, and J. Wildeman “Simultaneous enhancement of charge transport and exciton diffusion in poly(p-phenylenevinylene) derivatives”, Phys. Rev. B, 72, 045217 , 2005.

    [19 ]M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf,A. J. Heeger, C. J. Brabec, “Design Rules for Donors in Bulk Heterojunction Solar Cells - Towards 10 % Energy-Conversion
    Efficiency”, Adv. Mater., 6, 789, 2006.

    [20] P. Schilinsky, C. Waldauf, and C. J. Brabec, “Recombination andloss analysis in polythiophene based bulk heterojunction photode -tectors”, Appl. Phys. Lett., 81, 3885–3887, 2002.

    [21] P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster and D. E.Markov, “Device physics of polymer: Fullerene bulk heterojunction solar cells”, Adv. Mater., 19, 1551, 2007.

    [22] Parker. I. D, “Carrier tunneling and device characteristics in polymer light-emitting diodes”, J. Appl. Phys., 75, 1656, 1994.

    [23] X. Yang and J. Loos, “Toward High-Performance Polymer Solar Cells: The Importance of Morphology Control ”, Macromolecules, 40, 1353, 2007.

    [24] H. Hoppe, N. S. Sariciftci, “Morphology of polymer/fullerene bulk heterojunction solar cells”, J. Mater. Chem., 16, 45, 2006.

    [25] L. M. Chen, Z. Hong, G. Li, and Y. Yang, “Recent Progress in Polymer Solar Cells: Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells”, Adv. Mater., 21, 1434, 2009.

    [26] J. H. Park, J. S. Kim, J. H. Lee, W. H. Lee, and K. Cho, “Effect of Annealing Solvent Solubility on the Performance of Poly (3-hexyl thiophene)/Methanofullerene Solar Cells”, J. Phys. Chem. C, 113, 17579–17584, 2009.

    [27] Y. S. Kim, Y. Lee, J. K. Kim, E.-O. Seo, Eun-Woo Lee, W. Lee, Sung-Hwan Han, Soo-Hyoung Lee, “Effect of solvents on the performance and morphology of polymer photovoltaic devices”, Curr Appl Phys, 10, 985–989, 2010.

    [28] J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon,J. Y. Kim, K. Lee, G. C. Bazan, and A. J. Heeger, “Processing Additives for Improved Efficiency from Bulk Heterojunction Solar Cells”, J. Am Chem. Soc., 130, 3619-3623, 2008.

    [29] H.–Y. Chen, H. Yang, G. Yang, S. Sista, R. Zadoyan,G. Li, and Y. Yang, “Fast-Grown Interpenetrating Network in Poly (3-hexyl iophene): Methanofullerenes Solar Cells Processed with Additive”, J. Phys. Chem. C, 113, 7946–7953, 2009.

    [30] R. G. Alargova, S. Deguchi, and K. Tsujii, “Stable Colloidal Dispersions of Fullerenes in Polar Organic Solvents”, J. Am. Chem. Soc., 123, 10460-10467, 2001.

    [31] F.-C. Chen, H.-C. Tseng, and C.-J. Ko, “Solvent mixtures for improving device efficiency of polymerphotovoltaic devices”, Appl. Phys. Lett., 92, 103316, 2008.

    [32] S. Cook, A. Furube, and R. Katoh, “Mixed Solvents for Morphology Control of Organic Solar Cell Blend Films”, Jpn. J. Appl. Phys., 47, 2, 2008.

    [33] D. Yamanaka, S. Watanabe, T. Mizutani, K. Kojima, S. Ochiai “Nano-structure Control in the Bulk Heterojunction Layer for Organic Solar Cells”, Proc. of SPIE , 7722, 77221.

    [34] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells b self-organization of polymer blends”, Nat. Mater., 4, 864, 2005.

    [35] H.–L. Cheng, J.–W. Lin, M.–F. Jang, F.–C. Wu, W.–Y. Chou, M.–H. Chang, and C.-H. Chao, “Long-Term Operations of Polymeric Thin -Film Transistors: Electric-Field-Induced Intrachain Order and Charge Transport Enhancements of Conjugated Poly(3-hexylthioph ene) ”, Macromolecules, 42, 8251–8259, 2009.

    [36] P. J. Brown, D. S. Thomas, A. Kohler, J. S. Wilson, J. S. Kim,C. M. Ramsdale, H. Sirringhaus, and R. H. Friend, “Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophe ne) ”, Phys. Rev. B, 67, 064203, 2003.

    [37] Frank C. Spano, “Absorption in regio-regularpoly(3-hexyl)thiophene thin films:Fermi resonances, interband coupling and disorder ”, Chem. Phys., 325, 22, 2006.

    [38] J. Clark, J.-F. Chang, F. C. Spano, R. H. Friend, and C. Silva, “Deter mining exciton bandwidth and film microstructure in polythiophene films using linear absorption spectroscopy”, Appl. Phys. Lett. 94, 163306, 2009.

    [39] J. J. Yun, J. Peet, N.-S. Cho, G. C. Bazan, S. J. Lee, and M. Moskovits, “Insight into the Raman shifts and optical absorption changes upon annealing polymer/fullerene solar cells”, Appl. Phys. Lett., 92, 251912, 2008.

    [40] M. Baibarac, M. Lapkowski, A. Pron, S. Lefrant and I. Baltog, “Spectra of Poly(3-Hexylthiophene) in SERS Oxidized and Unoxidized States”, J. Raman. Spectrosc., 29, 825, 1998.

    [41] A. Sakamoto, Y. Furukawa and M. Tasumi, “Infrared and Raman Studies of Poly(ppheny1enevinylene) and Its Model Compounds”, J. Ph ys.Chem., 96, 1490, 1992.

    [42] R. Österbacka, C. P. An, X. M. Jiang and Z. V. Vardeny, “Two- dimensional electronic excitations in self-assembled conjugated polymer nanocrystals”, Science , 287, 839, 2000.

    [43] T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stühn, P. Schilinsky, C. Waldauf and C. J. Brabec, “Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells”, Adv. Fun. Mater., 15, 1193, 2005.

    [44] Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. Mcculloch, C.-S. Ha and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells”, Nat. Mater., 5, 197, 2006.

    [45] B. Kippelen, J. L. Bredas, “Organic photovoltaics”, Energy Environ. Sci., 2, 251–261, 2009.

    下載圖示 校內:2016-08-16公開
    校外:2016-08-16公開
    QR CODE