| 研究生: |
陳奕維 Chen, I-Wei |
|---|---|
| 論文名稱: |
以光調制光譜、螢光光譜和拉曼光譜研究InGaN/GaN材料的光學特性 Studies of the Optical Properties of InGaN/GaN by Photoreflectance、Photoluminescence and Raman Spectroscopy |
| 指導教授: |
黃正雄
Hwang, Jenn-Shyong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 光調制光譜 、螢光光譜 、拉曼光譜 、氮化銦鎵 、氮化鎵 |
| 外文關鍵詞: | PR, PL, Raman, InGaN, GaN |
| 相關次數: | 點閱:67 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光調制光譜(Photoreflectance,PR)、光激發螢光光譜(Photolu -minescence,PL)、拉曼光譜(Raman)具有非接觸性及非破壞性的特點,是研究半導體材料和半導體微結構的光電特性的一項普遍及有力的工具。本論文利用光譜技術:光調制光譜(Photoreflectance,PR)、光激發螢光光譜(Photoluminescence,PL)、拉曼光譜(Raman),研究InGaN /GaN半導體結構的光學特性。
InGaN/GaN半導體結構中,InGaN的組成比與厚度的不同而有不同程度的應力,導致不同大小的能隙值與價帶分裂,本論文首先以不同InGaN層厚度(25nm~200nm)的樣品來做光調制光譜(PR)的分析,並使用合金理論公式來求得In在樣品中的組成比,最後使用光激發螢光光譜(PL)和拉曼(Raman)光譜做比較,可發現隨著InGaN層厚度增加 ,光譜有紅位移的情形,此乃樣品中In含量減少所導致。
其次討論不同的退火溫度下(675℃~750℃),InGaN/GaN樣品的光譜分析,從光調制光譜(PR)、光激發螢光光譜(PL)和拉曼(Raman)光譜,皆可明顯看出能量峰值有藍位移的情形,並使用合金理論公式來求得In在樣品中的組成比,發現In含量隨溫度增高而減少。此結果為熱效應導致InGaN層中In往濃度低的GaN層擴散所造成。
Photoreflectance (PR), Photoluminescence (PL), and Raman are powerful tools to research into the optical and electrical properties of semiconductor materials and micro-structure, not only because of their nondestructive, but also because of their non-contact. My academic essay takes advantage of spectrum technology, including Photoreflectance(PR), Photoluminescence(PL), and Raman, to research into the optical and electrical properties of InGaN /GaN semiconductor structure.
Inside the InGaN/GaN semiconductor structure, its proportion and thickness would affect its strain, causing band gap energy to split up regardless of different sizes. First of all, we took several InGaN samples, ranging from 25nm to 200nm, to analyze Photoreflectance (PR). We used the formula of alloy theory to get the proportion of In in our samples. By comparing Photoluminescence (PL) with Raman, we found that the spectrum would red-shift with the increase of InGaN’s thickness, a situation resulted from the decrease of In’s amount.
Then, we analyzed InGaN/GaN samples’ spectrums under different annealing temperature, ranging from 675℃ to 750℃. According to Photoreflectance (PR), Photoluminescence (PL), and Raman, we can easily find out that these peak values would blue-shift. We used the formula of alloy theory to get the proportion of InGaN samples, and found that the amount of IN would decrease when the temperature increases. The result comes from heat effect. Within InGaN layer, heat would cause In to move into GaN layer that has low-concentration, and then diffuse.
1. N. Holonyak Jr. and S. F. Bevacqua,, "Coherent (Visible) Light Emission from Ga(As1-xPx) Junctions," Appl. Phys. Lett., vol. 1, pp. 82-83 (1962)
2. Jiangtao Hu, Teri Wang Odom, and Charles M. Lieber, Acc. Chem. Res. 32, 435 (1999)
3. Xiangfeng Duan, Yu Huang, Yi Cui, Jianfang Wang, and Charles M. Liber, Nature, 409, 66 (2001)
4. Michael H. Huang, Samuel Mao, Henning Feick, Haoquan Yan, Yiying Wu, Hannes Kind, Eicke Weber, Richard Russo, and Peidong Yang, Science, 292, 1897 (2001)
5. S. Yoshida, S. Misawa, and S.Gonda, Appl. Phys. Lett. 42, 427 (1983)
6. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyota, Appl. Phys. Lett. 48, 353 (1986); H. Amano, I. Akasaki, T.Kozawa, K. Hiramatsu, N. Sawaki, K. Ikeda, and Y. Ishi, J.Lumin. 40-41, 121 (1988); I.Akasaki, H. Amano, Y. Koide, K. Hiramatsu, and N. Sawaki, J. Cryst. Growth 98, 209 (1989)
7. H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, Jpn. J. Appl. Phys. Part 2 28, L2112 (1989)
8. H. Amano, T. Asahi and I. Akasaki, Jpn. J. Appl. Phys. Part 2 29,L205 (1990)
9. S. Nakamura, J. Appl. Phys. 30, 1705 (1991)
10. T. L. Tansley and C. P. Foley, J. Appl. Phys. 59, 3241 (1986)
11. S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, Jpn. J. Appl. Phys. Part 2 34, L1332 (1995)
12. S. C. Jain, M. Willander, J. Narayan, and R. Van Overstraeten, J. Appl. Phys. Lett. 87, 965 (2000)
13. V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V. Ivanov, V. A. Vekshin, F. Bechstedt, J. Furthmüller, J. Aderhold, J. Graul, A. V. Mudryi, H. Harima, A. Hashimoto, A. Yamanoto, and E. E. Haller, Phys. Status Solidi B 234, 787 (2002)
14. Motlan, E. M. Goldys, and T. L. Tansley, J. Cryst. Growth 241, 165 (2002)
15. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. kiyoku, Appl. Phys. Lett. 69, 4056 (1996)
16. S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett. 69, 4188 (1996)
17. Y. Narukawa, Y. Kawakami, M. Funato, Sz. Fujita, Sg. Fujita, and S. Nakamura, Phys. Rev. B 55, R1938 (1997)
18. P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, Appl. Phys. Lett. 71, 569 (1997)
19. P. Riblet, H. Hirayama, A. Kinoshita, A. Hirata, T. Sugano, and Y. Aoyagi, Appl. Phys. Lett. 75, 2241 (1999)
20. T. Inushima, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, T. Sakon, M. Motokawa, and S. Ohoya, J. Cryst. Growth 227-228, 481 (2001)
21. Y. -H. Cho, G. H. Gainer, A.J. Fisher, J. J. Song, S. Keller, U. K.Mishra, and S. P. DenBaars, Appl. Phys. Lett. 73, 1370 (1998)
22. T. Wang, H. Saeki, J. Bai, T. Shirahama, M. Lachab, and S. Sakai,Appl. Phys. Lett. 76, 1737 (2000)
23. K. Uchida, T. Tang, S. Goto, T. Mishima, A. Niwa, and J. Gotoh, Appl. Phys. Lett. 74, 1153 (1999)
24. C. Kisielowski, in Semiconductor and Semimetals, edited by J. I. Pankove and T. D. Moustakas, Vol. 57, pp 275-317
25. V. Y. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, Phys. Status Solidi B 229, R1 (2002)
26. I. Ho and G. B. Stringfellow, Appl. Phys. Lett. 69, 2701 (1996)
27. J. L. Sánchez-Rojas, J. A. Garrido, and E. Muòoz, Phys. Rev. B 61, 2773 (2000)
28. M. G. Cheong, C. Liu, H. W. Choi, B. K. Lee, E. -K. Suh and H. J. Lee, “Study of the origin of luminescence in high indium composition InGaN/GaN quantum wells”, Appl. Phys. Lett., vol. 93, pp. 4691-4695, (2003)
29. V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, Phys. Status Solidi B 230, R4 (2002)
30. H. Schomig, S. Halm, A. Forchel, G, Bacher, J. Off, and F. Scholz, Phy. Rev. B 92, 106802 (2004)
31. T. Wang, P. J. Parbrook, W. H. Fan and A. M. Fox,“Optical investigation of InGaN/GaN multiple-quantum wells under high excitation”, Appl. Phys. Lett., vol. 84, pp. 5159-5161, (2004)
32. C. Adelmann, J. Simon, G. Feuillet, N. T. Pelekanos and G. Fishman, “Self-assembled InGaN quantum dots grown by molecular-beam epitaxy”, Appl. Phys. Lett., vol. 76, pp. 1570-1572, (2000)
33. http://www.compoundsemiconductor.net/articles/news/6/11/17/1
34. http://www.lbl.gov/Science-Articles/Archive/MSD-full-spectrum-solar-cell.html
35. B. Damilano, N. Grandjean, S. Dalmasso and J. Masies, “Room-temperature blue-green emission from InGaN/GaN quantum dots made by strain-induced islanding growth”, Appl. Phys. Lett., vol. 75, pp. 3751-3753, (1999)
36. K. Tachibana, T. Someya and Y. Arakawa,“Nanometer-scale InGaN self-assembled quantum dots grown by metalorganic chemical vapor deposition”, Appl. Phys. Lett., vol. 74, pp. 383-385, (1999)
37. H. Hirayama, S. Tanaka, P. Ramvall and Y. Aoyagi,“Intense photoluminescence from self-assembling InGaN quantum dots artificially fabricated on AlGaN surfaces”, Appl. Phys. Lett., vol. 72, pp. 736-1738, (1998)
38. R. C. Tu, C. J. Tun, C. C. Chuo, B. C. Lee, C. E. Tsai, T. C. Wang, J. Chi, C. P. Lee and G. C. Chi,“Ultra-high density InGaN quantum dots grown by metalorganic chemical vapor deposition”, Jpn. J. Appl. Phys., vol. 43 2B, pp. L264-L266, (2004)
39. S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Luminescences from localized states in InGaN epilayers”, Appl. Phys. Lett., vol. 70, pp. 2822-2824, (1997)
40. N. P. Lakshmi and F. G. Thomas, Appl. Phys. Lett. 61, 1081, (1992)
41. O. J. Glembocki, B. V. Shanabrook, in D.G. Seiler and C. Boston, Semiconductors and Semimetals, (Academic Press, New York, 36, 221-292, 1992)
42. Y. Sun, J. H. Cho, E. –K. Suh, H. J. Lee, R. J. Choi and Y. B. Hahn, “Carrier dynamics of high-efficiency green light emission in graded-indium-content InGaN/GaN quantum wells: An important role of effective carrier transfer”, Appl. Phys. Lett., vol. 84, pp. 49-51, (2004)
43. M. E. Aumer, S. F. LeBoeuf, B. F. Moody, and S. M. Bedair, “Strain-induced piezoelectric field effects on light emission energy and intensity from AlInGaN/InGaN quantum wells”, Appl. Phys. Lett., vol. 79, pp . 3803-3805, (2001)
44. FE1 W Y,WU R Q,ZHOU S F.Optimal Consumption with Antici-pation:Methods of MartirIgale[J].Journal of Mathmatics,21 (2),138-144, (2001)
45. T. Mukai, H. Narimatsu and S. Nakamura: Jpn. J. Appl. Phys. 37 479. (1997)
46. T. Mukai, M. Yamada and S. Nakamura: Jpn. J. Appl. Phys. 38 3976. (1997)
47. H. Shen, Z. Hang, S. H. Pan, F. H. Pollak, and J. M. Woodall, Appl. Phys. Letts., 52, 2058, (1988)
48. M. Cardona, in Modulation Spectroscopy, (Academic, New York, 1969)
49. L. Bellaiche, T. Mattila, L.-W. Wang, S.-H. Wei and A. Zunger: Appl. Phys. Lett. 74 1842. (1999)
50. D. E. Aspnes, Phys. Rev. B 10, 4228, (1974)
51. T. M. Hsu, Y. C. Tien, N. H. Lu, S. P. Tsai, D. G. Liu and C. P. Lee, J. Appl. Phys. 72, 1065, (1992)
52. N. Bottka, D. K. Gaskill, R. J. M. Griffiths, R. R. Bradley, T. B. Joyce, C. Ito and D. McIntyre, J. Cryst. Growth 93, 481, (1988)
53. D. E. Aspnes and A. A. Studna, Phys. Rev. B 7, 4605, (1973)
54. J. S. Hwang, Y. C. Wang, W. Y. Chou, S. L. Tyan, M. Hong, J. P. Mannaerts, and J. Kwo, J. Appl. Phys. 83, 2857, (1998)
55. C. Wetzel, T. Takeuchi, S. Yamaguchi, H. Katoh, H. Amano and I.Akasaki: Appl. Phys. Lett. 73 1994. (1998)
56. C. J. Sandroff, R. N. Nottenburg, J.-C. Bischoff, and R. Bhat, Appl. Phys. Lett. 51, 33, (1987)
57. L. T. Romano, B. S. Krusor, M.D.McCluskey D. P. Bour and K. Nauka:Appl. Phys. Lett. 73 1757. (1998)
58. C. A. Parker, J. C. Roberts, S. M. Bedair, M. J. Reed, S. X. Liu, N. A.El-Masry and L. H. Robins: Appl. Phys. Lett. 75 2566. (1999)
59. S. K. Pugh, D. J. Dugdale, S. Brand and R. A. Abram: J. Appl. Phys. 86 3768. (1999)
60. T. Takeuchi, H. Takeuchi, S. Sota, H. Sakai, H. Amano and I. Akasaki: Jpn. J. Appl. Phys. 36 L177. (1997)
61. T. Huang and J. S. Harris, Jr.: Appl. Phys. Lett. 72 1158. (1998)
62. Y. C. Yeo, T. C. Chong and M. F. Li: J. Appl. Phys. 831429. (1998)
63. Y. P. Varshni, physica, Amsterdam, Vol.34, p149 (1967)
64. M. Suzuki, T. Uenoyama and A. Yanase: Phys. Rev. B 52 8132. (1995)
65. R. A. Abram, G. J. Rees , and B. L. H. Wilson, Adv. Phys. 27 799 (1978)
66. C. C. Chen, K. L. Hsieh, G. C. Chi, C. C. Chuo, J. I. Chyi and C. A.Chang, Solid-State Electronics 46, 1123 (2002)
67. D. Behr, J. Wagner, A. Ramakrishnan, H. Obloh, and K.-H. Bachem, Appl. Phys. Lett. 73, 241 (1998)
68. N. Wieser, O. Ambacher, H.-P. Felsl, L. Görgens, and M. Stutzmann, Appl. Phys. Lett. 74, 3981 (1999)
69. S. Pereira, M. R. Correira, E. Pereira, K. P. O’Donnell, C. Trager-Cowan,F. Sweeney, and E. Alves, Phys. Rev. B 64, 205311(2001)
70. M. R. Correia, S. Pereira, E. Pereira, J. Frandon, and E. Alves, Appl. Phys.Lett. 83, 4761 (2003)
71. S. Keller, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett.73, 10 (1998)
72. R. K. Ahrenkiel, Solid State Electron. 35, 239 (1992)
73. L. Artús, R. A. Stradling, Y. B. Li, S. J. Webb, W. T. Yuen, S. J. Chung, and R. Cuscó, Phys. Rev. B 54, 16373 (1996)
74. S. Hernández, N. Blanco, I. Mártil, G. González-Díaz, R. Cuscó, and L.Artús, J. Appl. Phys. 93, 9019 (2003)
75. T. Sugiura, Y. Kawaguchi, T. Tsukamoto, H. Andoh, M. Yamaguchi, K.Hiramatsu, and N. Sawaki, Jpn. J. Appl. Phys., Part 1 40, 5955 (2001)
76. D. Alexson et al., J. Appl. Phys. 89, 798 (2001)
77. H. Grille, C. Schnittler, and F. Bechstedt, Phys. Rev. B 61, 6091 (2000)
78. C. J. Deatcher, C. Liu, S. Pereira, M. Lada, A. G. Cullis, Y. J. Sun, O. Brandt, and I. M. Watson, Semicond. Sci. Technol. 18, 212 (2003)
79. F. B. Naranjo, S. Fernández, M. A. Sánchez-García, F. Calle, E. Calleja, A. Trampert, and K. H. Ploog, Mater. Sci. Eng., B 93, 131 (2002)
80. M. Kurouchi, T. Araki, H. Naoi, T. Yamaguchi, A. Suzuki, and Y.Nanishi,Phys. Status Solidi B 241, 2843 (2004)
81. R. W. Martin, P. R. Edwards, K. P. O’Donnell, E. G. Mackay, and I. M.Watson, Phys. Status Solidi A 192, 117 (2002)
82. S. Pereira et al., Appl. Phys. Lett. 81, 1207 (2002)
83. J. W. Trainor and K. Rose, J. Electron. Mater. 3, 821 (1974)
84. Yen-Kuang KUO, Wen-Wei LIN and Jiann LIN, Jpn. J. Appl. Phys. Vol. 40 (2001)
85. L. Siozade, J. Leymarie, P. Disseix, A. Vasson, M. Mihailovic, N.Grandjean,M. Leroux, and J. Massies, Solid State Commun. 115, 575(2000)
86. S. Yu, K. W. Kim, L. Bergman, M. Dutta, M. A. Stroscio, and J. M.Zavada, Phys. Rev. B 58, 15283 (1998)
87. V. Y. Davydov et al., Appl. Phys. Lett. 75, 3297 (1999)
88. G. Abstreiter, M. Cardona, and A. Pinczuk, Light Scattering in Solids IV,Topics in Applied Physics Vol. 54 _Springer, Berlin, (1984)
89. L. Artús, R. Cuscó, J. Ibáñez, N. Blanco, and G. González-Díaz, Phys.Rev. B 60, 5456 (1999)
90. M. R. Correia et al., Appl. Phys. Lett. 85, 2235 (2004)
91. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Agen III, E. E. Haller, H. Lu,andW. J. Schaff, Appl. Phys. Lett. 80, 4741 (2002)
92. S. Hernández, R. Cuscó, D. Pastor, and L. Artús, K. P. O’Donnell and R. W. Martin, I. M. Watson, Y. Nanishi, E. Calleja, Applied Physics 98, 013511 (2005)
93. V. Y. Davydov et al., Phys. Rev. B 58, 12899 (1998)
94. V. Katchkanov et al., Mater. Res. Soc. Symp. Proc. 831, E3.30 (2004)
95. M. Cardona, Light Scattering in Solids II, Topics in Applied Physics Vol.50 _Springer, Berlin, (1982)
96. D. J. Dewsnip et al., Semicond. Sci. Technol. 12, 55 (1997)
97. W. H. Sun, S. J. Chua, L. S. Wang, and X. H. Zhang, J. Appl. Phys. 91,4917 (2002)
98. A. García-Cristóbal, A. Cantarero, C. Trallero-Giner, and M. Cardona,Phys. Rev. B 49, 13430 (1994)
99. R. M. Martin and C. M. Varma, Phys. Rev. Lett. 26, 1241 (1971)
100. S. Yoshida, S. Misawa and S. Gonda, Appl. Phys. Lett. 42, 427(1983)
101. H. Amino, N. Sawaki, I. Akasaki and Y. Toyota, Appl. Phys. Lett. 48, 353 (1986)
102. H. Amano, M. Kito, K. Hiramatsu and I. Akasaki, Jpn. J. Appl. Phys. Part 228, L2112 (1989)
103. S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada and T. Mukai,Jpn. J. Appl. Phys. Part 2 34, L1332 (1995)
104. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsashita,Y. Sugimoto and H. kiyoku, Appl. Phys. Lett. 69, 4056 (1996)
105. S. Chichibu, T. Azuhata, T. Sota and S. Nakamura, Appl. Phys. Lett. 69,4188 (1996)
106. Y. Narukawa, Y. Kawakami, M. Funato, Sz. Fujita, Sg. Fujita and S.Nakamura, Phys. Rev. B 55, R1938 (1997)
107. Y. Narukawa, Y. Kawakami, M. Funato, Sz. Fujita, Sg. Fujita and S.Nakamura, Appl. Phys. Lett. 70, 981 (1997)
108. P. Riblet, H. Hirayama, A. Kinoshita, A. Hirata, T. Sugang and Y. Aoyagi,Appl. Phys. Lett. 75, 2241 (1999)
109. T. Wang, H. Saeki, J. Bai, T. Shirahama, M. Lachab and S. Sakai, Appl.Phys. Lett. 76, 1737 (2000)
110. K. Uchida, T. Tang, S. Goto, T. Mishima, A. Niwa and J. Gotog, Appl.Phys. Lett. 74, 1153 (1999)
111. Dunbar, U. Bangert, P. Dawson, M. Halsall, Y. Shiraki, M. Miura, I.Berbezier, B. A. Joyce and J. Zhang, Phys. Stat. Sol.(b)224,265 (2001)
112. M. Smith, G. D. Chen, J. Y. Lin, H. X. Jiang and M. A. Khan, Q.Chen, Appl. Phys. Lett. 69, 2837 (1996)
113. S. F. Chichibu, T. Azuhata, T. Sota, T. Mukai and S. Nakamura, J.Appl. Phys. Lett . 88, 9 (2000)
114. K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Harahuchi, M. Kohuchi, and H. Kakibayashi, J. Appl. Phys. 77(2), 447 (1995)