| 研究生: |
黃俊閔 Huang, Chun-Min |
|---|---|
| 論文名稱: |
利用掃描式熱探針微影技術低溫合成及成像銀奈米粒子之研究 Low-Temperature Scanning Thermal Lithography for Silver Nanoparticle Synthesis and Patterning |
| 指導教授: |
郭昌恕
Kuo, Chang-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 奈米熱分析 、定點熱分析 、熱探針微影技術 、奈米銀粒子 、過氧化苯甲醯 、高分子薄膜 |
| 外文關鍵詞: | Nano-TA, in-situ thermal analysis, SThM, silver nanoparticles, BPO, thermal properties of thin film |
| 相關次數: | 點閱:110 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以掃描式熱探針微影技術合成及成像銀奈米粒子於高分子薄膜中。掃描式熱探針微影技術將微米熱探針導入掃描探針微影術,此熱探針不僅提供定點加熱,並且同時為熱流感應器,可進行微米級熱分析。利用旋轉塗佈法,聚甲基丙烯酸甲酯與硝酸銀溶液在載玻片或聚亞醯胺基材形成奈米薄膜,當掃描式熱探針微影製程中的基板材料。在掃描式熱探針微影製程中,利用熱探針對銀的先趨物進行熱還原反應,在奈米薄膜中成功地還原出銀奈米粒子。並藉由定點熱分析,分析銀奈米粒子合成所需的反應溫度與熱流量。此外,過氧化苯甲醯為一種過氧化高能材料,高能材料在相對較低的溫度裂解,進一步產生焦耳熱能,此利用此焦耳熱能加速所需的化學或物理反應,高能材料可當另一個熱能來源。
由實驗結果中證實,加入過氧化苯甲醯後,利用掃描式熱探針微影技術合成銀奈米粒子之反應溫度可降至150oC。進一步的熱分析指出,反應溫度的減少是由於高能材料的影響。由暗視野光學顯微鏡與穿透式電子顯微鏡的圖像中,可以確認銀奈米粒子在聚甲基丙烯酸甲酯薄膜中分佈的情形。以微米熱探針進行掃描式熱探針微影製程,其生成圖像線寬的空間解析度約為2微米。
In this research work, scanning thermal lithography (SThL) was demonstrated for the synthesis and patterning of silver nanoparticles in a polymer-based thin film. This SThL technique involved the use of the scanning probe microscope equipped with a micro-scaled thermal probe that provided a localized heating mechanism and simultaneously acted as a temperature sensor. A solution containing poly (methyl methacrylate) and silver nitrate was spin-coated on slide or polyimide substrates. Thermally-induced reduction reaction of silver precursors was successfully achieved by the thermal probe with the formation of embedded silver nanoparticles. In-situ thermal analysis was also investigated for the details of nanoparticle synthesis in terms of the reaction temperature and the required heat flow. In addition, a peroxide-based energetic reagent, Benzoyl Peroxide (BPO), was introduced as the extra energy source. Thermal decomposition of BPO took place at the relatively low temperature, which allowed the localized joule heat to be generated to accelerate the desired chemical or physical reactions. As a result, the synthesis and patterning of silver nanoparticles via the SThL was demonstrated at the temperature as low as about 150oC. Further investigations also indicated the temperature reduction was contributed by the presence of energetic reagents. Dark-field optical microscopy and TEM images confirmed the patterned silver nanoparticles in PMMA films. SThL with micro-scaled thermal probes produced the spatial resolution as small as 2 micrometers.
1. Albrecht, T. R.; Quate, C. F., Atomic resoluton imaging of a nonconductor by atomic force microscoy. Journal of Applied Physics 1987, 62 (7), 2599-2602.
2. Binnig, G.; Rohrer, H.; Gerber, C.; Weibel, E., Surface studies by scanning tunneling microscopy. Physical Review Letters 1982, 49, 57.
3. Binnig, G.; Rohrer, H.; Gerber, C.; Weibel, E., 7 x 7 reconstruction on Si(111) resolved in real space. Physical Review Letters 1983, 50, 120.
4. Binnig, G.; Garcia, N.; Rohrer, H.; Soler, J. M.; Flores, F., Electron-metal-surface interaction potential with vacuum tunneling: Observation of the image force. Physical Review B 1984, 30, 4816.
5. Hansma, P. K.; Tersoff, J., Scanning tunneling microscopy. Journal of Applied Physics 1987, 61 (2), R1-R24.
6. Meyer, E., Atomic force microscopy. Progress in Surface Science 1992, 41, 3-3.
7. Binnig, G.; Quate, C. F.; Gerber, C., Atomic force microscope. Physical Review Letters 1986, 56, 930.
8. Binnig, G.; et al., Atomic resolution with atomic force microscope. EPL (Europhysics Letters) 1987, 3 (12), 1281.
9. Oesterschulze, E.; Stopka, M. In Photothermal imaging by scanning thermal microscopy, Mineapolis, Minnesota (USA), AVS: Mineapolis, Minnesota (USA), 1996; pp 1172-1177.
10. Price, D. M.; Reading, M.; Hammiche, A.; Pollock, H. M., Micro-thermal analysis: scanning thermal microscopy and localised thermal analysis. International Journal of Pharmaceutics 1999, 192 (1), 85-96.
11. Gmelin, E.; Fischer, R.; Stitzinger, R., Sub-micrometer thermal physics - An overview on SThM techniques. Thermochimica Acta 1998, 310 (1-2), 1-17.
12. Pylkki, R. J.; Moyer, P. J.; West, P. E., Scanning near-field optical microscopy and scanning thermal microscopy. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 1994, 33 (6B), 3785-3790.
13. Nelson, B. A.; King, W. P., Measuring material softening with nanoscale spatial resolution using heated silicon probes. Rev. Sci. Instrum. 2007, 78 (2).
14. Hammiche, A.; Reading, M.; Pollock, H. M.; Song, M.; Hourston, D. J., Localized thermal analysis using a miniaturized resistive probe. Rev. Sci. Instrum. 1996, 67 (12), 4268-4274.
15. Sharp, J. H., Nomenclature in thermal-analysis-reply. Thermochimica Acta 1986, 104, 395-396.
16. Williams, C. C.; Wickramasinghe, H. K., Scanning thermal profiler. Applied Physics Letters 1986, 49 (23), 1587-1589.
17. Majumdar, A.; Carrejo, J. P.; Lai, J., THERMAL IMAGING USING THE ATOMIC FORCE MICROSCOPE. Appl. Phys. Lett. 1993, 62 (20), 2501-2503.
18. Hammiche, A.; Hourston, D. J.; Pollock, H. M.; Reading, M.; Song, M., Scanning thermal microscopy: Subsurface imaging, thermal mapping of polymer blends, and localized calorimetry. Journal of Vacuum Science & Technology B 1996, 14 (2), 1486-1491.
19. Hammiche, A.; Pollock, H. M.; Song, M.; Hourston, D. J., Sub-surface imaging by scanning thermal microscopy. Measurement Science & Technology 1996, 7 (2), 142-150.
20. William, P. K.; Thomas, W. K.; Kenneth, E. G.; Graham, C.; Michel, D.; Urs, D.; Hugo, R.; Gerd, K. B.; Peter, V., Atomic force microscope cantilevers for combined thermomechanical data writing and reading. Applied Physics Letters 2001, 78 (9), 1300-1302.
21. J. YeM. , R., N. Gotzen, and G. Van Assche, Scanning Thermal Probe Microscopy Nano Thermal Analysis with Raman Microscopy. NANOTHERMAL ANALYSIS March,2007, S5.
22. Moon, I.; Androsch, R.; Chen, W.; Wunderlich, B., The principles of micro-thermal analysis and its application to the study of macromolecules. Journal of Thermal Analysis and Calorimetry 2000, 59 (1-2), 187-203.
23. Hammiche, A.; Hourston, D. J.; Pollock, H. M.; Reading, M.; Song, M. In Scanning thermal microscopy: Subsurface imaging, thermal mapping of polymer blends, and localized calorimetry, AVS: 1996; pp 1486-1491.
24. Hammiche, A.; et al., Sub-surface imaging by scanning thermal microscopy. Measurement Science and Technology 1996, 7 (2), 142.
25. Song, M.; Hourston, D. J.; Grandy, D. B.; Reading, M., An application of micro-thermal analysis to polymer blends. J. Appl. Polym. Sci. 2001, 81 (9), 2136-2141.
26. Boroumand, F. A.; Hammiche, A.; Hill, G.; Lidzey, D. G., Characterizing Joule Heating in Polymer Light-Emitting Diodes Using a Scanning Thermal Microscope. Advanced Materials 2004, 16 (3), 252-256.
27. Ye, J.; Kojima, N.; Furuya, K.; Munakata, F.; Okada, A., Micro-thermal analysis of thermal conductance distribution in advanced silicon nitrides. Journal of Thermal Analysis and Calorimetry 2002, 69 (3), 1031-1036.
28. Botterill, N. W.; Grant, D. M., Novel micro-thermal characterisation of thin film NiTi shape memory alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2004, 378 (1-2), 424-428.
29. Yonemochi, E.; Hoshino, T.; Yoshihashi, Y.; Terada, K., Evaluation of the physical stability and local crystallization of amorphous terfenadine using XRD-DSC and micro-TA. Thermochimica Acta 2005, 432 (1), 70-75.
30. Dagata, J. A.; Schneir, J.; Harary, H. H.; Evans, C. J.; Postek, M. T.; Bennett, J., Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air. Applied Physics Letters 1990, 56 (20), 2001-2003.
31. Matsumoto, K.; Takahashi, S.; Ishii, M.; Hoshi, M.; Kurokawa, A.; Ichimura, S.; Ando, A., Application of STM nanometer-size oxidation process to planar-type MIN diode. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 1995, 34 (2B), 1387-1390.
32. Fontaine, P. A.; Dubois, E.; Stievenard, D., Characterization of scanning tunneling microscopy and atomic force microscopy-based techniques for nanolithography on hydrogen-passivated silicon. Journal of Applied Physics 1998, 84 (4), 1776-1781.
33. Okada, Y.; Amano, S.; Kawabe, M.; Harris, J. J. S., Basic mechanisms of an atomic force microscope tip-induced nano-oxidation process of GaAs. Journal of Applied Physics 1998, 83 (12), 7998-8001.
34. Klehn, B.; Kunze, U., Nanolithography with an atomic force microscope by means of vector-scan controlled dynamic plowing. Journal of Applied Physics 1999, 85 (7), 3897-3903.
35. Piner, R. D.; Zhu, J.; Xu, F.; Hong, S. H.; Mirkin, C. A., "Dip-pen" nanolithography. Science 1999, 283 (5402), 661-663.
36. Salaita, K.; Wang, Y.; Mirkin, C. A., Applications of dip-pen nanolithography. Nat Nano 2007, 2 (3), 145-155.
37. Li, S. F.; Szegedi, S.; Goluch, E.; Liu, C., Dip pen nanolithography functionalized electrical gaps for multiplexed DNA detection. Analytical Chemistry 2008, 80 (15), 5899-5904.
38. Wang, H. T.; Nafday, O. A.; Haaheim, J. R.; Tevaarwerk, E.; Amro, N. A.; Sanedrin, R. G.; Chang, C. Y.; Ren, F.; Pearton, S. J., Toward conductive traces: Dip Pen Nanolithography (R) of silver nanoparticle-based inks. Applied Physics Letters 2008, 93 (14).
39. Huang, L.; Chang, Y. H.; Kakkassery, J. J.; Mirkin, C. A., Dip-pen nanolithography of high-melting-temperature molecules. Journal of Physical Chemistry B 2006, 110, 20756-20758.
40. Kim, K. H.; Moldovan, N.; Espinosa, H. D., A nanofountain probe with sub-100 nm molecular writing resolution. Small 2005, 1 (6), 632-635.
41. Maedler, C.; Chada, S.; Cui, X.; Taylor, M.; Yan, M.; La Rosa, A., Creation of nanopatterns by local protonation of P4VP via dip pen nanolithography. Journal of Applied Physics 2008, 104 (1).
42. Amro, N. A.; Xu, S.; Liu, G.-y., Patterning surfaces using tip-directed displacement and self-assembly. Langmuir 2000, 16 (7), 3006-3009.
43. Liu, M.; Amro, N. A.; Chow, C. S.; Liu, G.-y., Production of nanostructures of DNA on surfaces. Nano Letters 2002, 2 (8), 863-867.
44. Nam, J.-M.; Han, S. W.; Lee, K.-B.; Liu, X.; Ratner, M. A.; Mirkin, C. A., Bioactive protein nanoarrays on nickel oxide surfaces formed by dip-pen nanolithography. Angewandte Chemie International Edition 2004, 43 (10), 1246-1249.
45. Zhang, H.; Mirkin, C. A., DPN-generated nanostructures made of gold, silver, and palladium. Chemistry of Materials 2004, 16 (8), 1480-1484.
46. Bullen, D.; Liu, C., Electrostatically actuated dip pen nanolithography probe arrays. Sensors and Actuators A: Physical 2006, 125 (2), 504-511.
47. Hu, S.; Hamidi, A.; Altmeyer, S.; Koster, T.; Spangenberg, B.; Kurz, H., Fabrication of silicon and metal nanowires and dots using mechanical atomic force lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 1998, 16 (5), 2822-2824.
48. Chen, J.-M.; Liao, S.-W.; Tsai, Y.-C., Electrochemical synthesis of polypyrrole within PMMA nanochannels produced by AFM mechanical lithography. Synthetic Metals 2005, 155 (1), 11-17.
49. Wang, Y.; Hong, X. D.; Zeng, J.; Liu, B. Q.; Guo, B.; Yan, H., AFM tip hammering nanolithography. Small 2009, 5 (4), 477-483.
50. Liu, C. D.; Wu, S. Y.; Han, J. L.; Hsieh, K. H., Patterned conductive polyaniline films fabricated using lithography and in-situ polymerization. J. Appl. Polym. Sci. 2010, 115 (4), 2271-2276.
51. Sahoo, D. R.; Haberle, W.; Sebastian, A.; Pozidis, H.; Eleftheriou, E., High-throughput intermittent-contact scanning probe microscopy. Nanotechnology 2010, 21 (7).
52. Dinelli, F.; Menozzi, C.; Baschieri, P.; Facci, P.; Pingue, P., Scanning probe nanoimprint lithography. Nanotechnology 2010, 21 (7).
53. Han, J.; Lee, K. H.; Fujii, S.; Sano, H.; Kim, Y. J.; Murase, K.; Ichii, T.; Sugimura, H., Scanning capacitance microscopy for alkylsilane-monolayer-covered Si substrate patterned by scanning probe lithography. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 2007, 46 (8B), 5621-5625.
54. Lee, S.; Saito, N.; Takai, O., Highly reproducible technique for three-dimensional nanostructure fabrication via anodization scanning probe lithography. Applied Surface Science 2009, 255 (16), 7302-7306.
55. Choi, I.; Yang, Y. I.; Kim, Y. J.; Kim, Y.; Hahn, J. S.; Choi, K.; Yi, J., Directed positioning of single cells in microwells fabricated by scanning probe lithography and wet etching methods. Langmuir 2008, 24 (6), 2597-2602.
56. Choi, I.; Kim, Y.; Yi, J., Fabrication of hierarchical micro/nanostructures via scanning probe lithography and wet chemical etching. Ultramicroscopy 2008, 108 (10), 1205-1209.
57. Lee, W. K.; Sheehan, P. E., Scanning probe lithography of polymers: Tailoring morphology and functionality at the nanometer scale. Scanning 2008, 30 (2), 172-183.
58. Bae, J. H.; Ono, T.; Esashi, M., Scanning probe with an integrated diamond heater element for nanolithography. Applied Physics Letters 2003, 82 (5), 814-816.
59. King, W. P.; Saxena, S.; Nelson, B. A.; Weeks, B. L.; Pitchimani, R., Nanoscale thermal analysis of an energetic material. Nano Letters 2006, 6 (9), 2145-2149.
60. Hua, Y. M.; Saxena, S.; Clifford, H.; King, W. P., Nanoscale thermal lithography by local polymer decomposition using a heated atomic force microscope cantilever tip. Journal of Micro-Nanolithography Mems and Moems 2007, 6 (2).
61. Hua, Y. M.; King, W. P.; Henderson, C. L., Nanopatterning materials using area selective atomic layer deposition in conjunction with thermochemical surface modification via heated AFM cantilever probe lithography. Microelectronic Engineering 2008, 85 (5-6), 934-936.
62. Basu, A. S.; McNamara, S.; Gianchandani, Y. B., Scanning thermal lithography: Maskless, submicron thermochemical patterning of photoresist by ultracompliant probes. Journal of Vacuum Science & Technology B 2004, 22 (6), 3217-3220.
63. Fenwick, O.; Bozec, L.; Credgington, D.; Hammiche, A.; Lazzerini, G. M.; Silberberg, Y. R.; Cacialli, F., Thermochemical nanopatterning of organic semiconductors. Nat. Nanotechnol. 2009, 4 (10), 664-668.
64. Szoszkiewicz, R.; Okada, T.; Jones, S. C.; Li, T. D.; King, W. P.; Marder, S. R.; Riedo, E., High-speed, sub-15 nm feature size thermochemical nanolithography. Nano Letters 2007, 7 (4), 1064-1069.
65. Duvigneau, J.; Schonherr, H.; Vancso, G. J., Atomic force microscopy based thermal lithography of poly(tert-butyl acrylate) block copolymer films for bioconjugation. Langmuir 2008, 24 (19), 10825-10832.
66. Sheehan, P. E.; Whitman, L. J.; King, W. P.; Nelson, B. A., Nanoscale deposition of solid inks via thermal dip pen nanolithography. Applied Physics Letters 2004, 85 (9), 1589-1591.
67. Lee, W. K.; Whitman, L. J.; Lee, J.; King, W. P.; Sheehan, P. E., The nanopatterning of a stimulus-responsive polymer by thermal dip-pen nanolithography. Soft Matter 2008, 4 (9), 1844-1847.
68. Chen, X.; Lee, D. W.; Choi, Y. S., High efficiency micromachining system applied in nanolithography. International Journal of Modern Physics B 2008, 22 (9-11), 1865-1870.
69. Mock, J. J.; Barbic, M.; Smith, D. R.; Schultz, D. A.; Schultz, S., Shape effects in plasmon resonance of individual colloidal silver nanoparticles. The Journal of Chemical Physics 2002, 116 (15), 6755-6759.
70. Eustis, S.; El-Sayed, M. A., Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chemical Society Reviews 2006, 35 (3), 209-217.
71. Nonnenmacher, M.; Wickramasinghe, H. K., Scanning probe microscopy of thermal conductivity and subsurface properties. Applied Physics Letters 1992, 61 (2), 168-170.
72. Nonnenmacher, M.; Wickramasinghe, H. K., Optical absorption spectroscopy by scanning force microscopy. Ultramicroscopy 1992, 42-44 (Part 1), 351-354.
73. Nakabeppu, O.; Igeta, M.; Hijikata, K., Experimental study on point contact transport phenomena using the atomic force microscope. Microscale Thermophys. Eng. 1997, 1 (3), 201-213.
74. Mills, G.; Zhou, H.; Midha, A.; Donaldson, L.; Weaver, J. M. R., Scanning thermal microscopy using batch fabricated thermocouple probes. Applied Physics Letters 1998, 72 (22), 2900-2902.
75. Nakabeppu, O.; Chandrachood, M.; Wu, Y.; Lai, J.; Majumdar, A., SCANNING THERMAL IMAGING MICROSCOPY USING COMPOSITE CANTILEVER PROBES. Appl. Phys. Lett. 1995, 66 (6), 694-696.
76. Majumdar, A., Scanning thermal microscopy. Annu. Rev. Mater. Sci. 1999, 29, 505-585.
77. Majumdar, A., Scanning thermal microscopy. Annu. Rev. Mater. Sci. 1999, 29 (1), 505-585.
78. Kim, K.; Chung, J.; Won, J.; Kwon, O.; Lee, J. S.; Park, S. H.; Choi, Y. K., Quantitative scanning thermal microscopy using double scan technique. Applied Physics Letters 2008, 93 (20), 203115-3.
79. Chen, C. K.; Heinz, T. F.; Ricard, D.; Shen, Y. R., Surface-enhanced second-harmonic generation and Raman scattering. Physical Review B 1983, 27 (4), 1965.
80. Aslan, K.; Gryczynski, I.; Malicka, J.; Matveeva, E.; Lakowicz, J. R.; Geddes, C. D., Metal-enhanced fluorescence: an emerging tool in biotechnology. Current Opinion in Biotechnology 2005, 16 (1), 55-62.
81. Lee, I. Y. S.; Suzuki, H.; Ito, K.; Yasuda, Y., Surface-enhanced fluorescence and reverse saturable absorption on silver nanoparticles. The Journal of Physical Chemistry B 2004, 108 (50), 19368-19372.
82. Geddes, C. D.; Parfenov, A.; Roll, D.; Fang, J.; Lakowicz, J. R., Electrochemical and laser deposition of silver for use in metal-enhanced fluorescence. Langmuir 2003, 19 (15), 6236-6241.
83. Lakowicz, J. R.; Gryczynski, I.; Malicka, J.; Gryczynski, Z.; Geddes, C. D., Enhanced and localized multiphoton excited fluorescence near metallic silver islands: Metallic islands can increase probe photostability. J. Fluoresc. 2002, 12 (3-4), 299-302.
84. Nikoobakht, B.; Wang, J.; El-Sayed, M. A., Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition. Chemical Physics Letters 2002, 366 (1-2), 17-23.
85. Hulteen, J. C.; Vanduyne, R. P., Nanosphere lithography - A materials general fabrication process for periodic particles array surfaces. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films 1995, 13 (3), 1553-1558.
86. Doering, W. E.; Nie, S., Single-molecule and single-nanoparticle SERS: Examining the roles of surface active sites and chemical enhancement. The Journal of Physical Chemistry B 2001, 106 (2), 311-317.
87. Nie, S.; Emory, S. R., Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275 (5303), 1102-1106.
88. Jiang, J.; Bosnick, K.; Maillard, M.; Brus, L., Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals. Journal of Physical Chemistry B 2003, 107 (37), 9964-9972.
89. Jain, P. K.; Huang, X.; El-Sayed, I. H.; El-Sayad, M. A., Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2007, 2 (3), 107-118.
90. McFarland, A. D.; Van Duyne, R. P., Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Letters 2003, 3 (8), 1057-1062.
91. Haynes, C. L.; Van Duyne, R. P., Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. The Journal of Physical Chemistry B 2001, 105 (24), 5599-5611.
92. Panáček, A.; Kvítek, L.; Prucek, R.; Kolář, M.; Večeřová, R.; Pizúrová, N.; Sharma, V. K.; Nevěčná, T. j.; Zbořil, R., Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. The Journal of Physical Chemistry B 2006, 110 (33), 16248-16253.
93. Peterson, M. S. M.; Bouwman, J.; Chen, A.; Deutsch, M., Inorganic metallodielectric materials fabricated using two single-step methods based on the Tollen's process. Journal of Colloid and Interface Science 2007, 306 (1), 41-49.
94. L'Vov, B. V.; Ugolkov, V. L., Kinetics and mechanism of free-surface decomposition of solid and melted AgNO3 and Cd(NO3)2 analyzed thermogravimetrically by the third-law method. Thermochimica Acta 2004, 424 (1-2), 7-13.
校內:2015-08-23公開