簡易檢索 / 詳目顯示

研究生: 彭姸菱
Peng, Yen-Ling
論文名稱: 塊狀多孔爐碴的製備並應用於高磷水之處理
Block-forming of porous ladle furnace steel slag for phosphorous-rich water treatment
指導教授: 廖峻德
Liao, Jiunn-Der
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 63
中文關鍵詞: 爐碴多孔高磷水處理循環經濟
外文關鍵詞: steel slag, porous, phosphorous-rich water treatment, circular economy
相關次數: 點閱:92下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 爐碴作為一貫化作業的副產品,伴隨著鋼鐵材料的製造大量產出,現行的處理技術與安定化流程卻不敷使用,導致大量的爐碴變成負資產,不當囤積汙染環境且浪費資源,本研究依循循環經濟的理念,將廢棄物轉為資源,希望能將爐碴重新投入產業鏈循環。本實驗使用脫硫爐碴,此為電弧爐後二次精煉調整304鋼種成分時的副產品,脫硫爐碴經粉末冶金程序,活化並形成穩固的多孔結構,作為濾除磷的材料,不僅可以使體積固定方便運輸,且在過濾過程中不須攪拌混和設備,不會阻塞儀器,其適當的孔洞率也能增加反應面積,平衡濾片的機械性質與濾水效率。
    XRF分析顯示,還原碴主要組成元素為鈣與矽,兩者相加,占總成分的95 %以上,其中的鈣為用於濾磷的主要有效成分,占60 %以上。將XRD與SEM的結果相互對照時發現,爐碴經過1000℃熱處理後,將使得有助於濾磷的礦物成分,例如:白雲石,因高溫而變質,且有晶型的轉變,導致連通孔的減少。而800℃的熱處理溫度,不足以固化樣品,部分樣品無法通過萬能試驗機的壓縮測試,未符合ASTM C159 - 06(2016)的標準。900°C的最高熱處理溫度,在活化成分與調節pH值及機械性質都有最佳的表現,因粉末冶金的特性,由阿基米德法測定皆可得到28 vol%以上的孔隙率,經計算,5 wt% PVA 貢獻約8 vol%的孔隙率。
    在除磷實驗中,鈣溶出量多與pH值高,均有助於除磷,其中,以pH值的影響較大。未添加造孔劑的濾片,為符合放流水標準且限制3小時濾水時間的情況下,可重複使用6次,有添加造孔劑的濾片則多至8次,其中,LF _900_ 10 在第8次濾水時,去磷率仍可高於99 %。使用磷酸二氫鉀與磷酸二氫銨調配高磷水,結果證明,爐碴在不同背景下的濾磷效能沒有顯著差異,為了完全符合標準,此種濾材使用壽命為6次以下。由於塊狀多孔爐碴的製作及使用過程與安定化相似,有希望在符合相關規範的情況下製成隔音牆等,使得濾後的爐碴塊得以繼續循環使用。

    Waste utilization is an attractive alternative to disposal as disposal cost and potential pollution problems are reduced or even eliminated along with the achievement of resource conservation. Steelmaking operations are specifically concerned in this problem because of the generation of a huge quantity of by-products. Approximately 1.5 million furnace steel slag is produced each year in the Taiwan, thus to find out a suitable utility is needed. In this study, ladle furnace steel slag (LF slag) was modified to apply for the filtration of phosphorous-rich water and to save time and resources from other utilities. Powder metallurgy (PM) method was applied for materials processing to prepare a porous steel slag filtering element. Activating the slag prior to incorporation into wastewater treatment filters could remove the aging affect. It then results to higher pH value of the phosphorus-rich water (P-rich water) and the uptake of PO43-. When the effluent pH value fell below 9, the P removal percentage started to decrease significantly. The appropriate heating temperature and higher pH value are favorable for the uptake of PO43-. Lightweight block-forming porous ladle furnace steel slag with low densities, large specific surface, and high strength is expected to reduce transport cost and the frequency of replacement in the process of filtrating.

    摘要................ I Extended Abstract .............. II 誌謝................ X 目錄 ............... XI 圖目錄 .............. XIV 表目錄 .............. XVI 第一章緒論 ............... 1 1.1 前言.............. 1 1.2 研究動機.............. 3 第二章文獻回顧與理論基礎........... 5 2.1 爐碴(石)的製程與性質.......... 5 2.1.1 一貫化作業........... 5 2.1.2 爐碴(石)的特性與應用......... 6 2.1.3 爐碴(石)的主要成分......... 7 2.2 磷的性質、危害與去除方法.......... 8 2.2.1 磷的性質............. 8 2.2.2 磷的危害與限制 ........... 10 2.2.3 去除磷的方法 ........... 10 2.3 多孔材料 .............. 12 2.3.1 造孔劑選用 ........... 12 2.3.2 孔隙率變數 ........... 13 2.3.3 孔隙率測定(Porosity measurement) ....... 15 2.3.4 粉末冶金 (Powder Metallurgy) ........ 16 2.3.5 燒結 (Sintering) .......... 17 2.4 研究目的 .............. 19 第三章實驗材料與方法 ........... 20 3.1 實驗架構及流程 ............ 20 3.1.1 塊狀多孔爐碴製備 ........... 20 3.1.2 濾水程序設計 ........... 22 3.2 實驗藥品 .............. 23 3.2.1 Ladle steel slag ........... 23 3.2.2 造孔劑:聚乙烯醇( PVA ) ......... 24 3.2.3 高磷水製備 ........... 25 3.3 實驗儀器 .............. 25 3.3.1 高溫爐 ............. 25 3.3.2 熱重分析儀( TGA ) ......... 26 3.3.3 X 射線螢光光譜儀( XRF ) ........ 26 3.3.4 X 射線繞射分析儀( XRD ) ......... 26 3.3.5 高解析熱電子型場發射掃描式電子顯微鏡( SEM ) .... 28 3.3.6 萬能試驗機 ........... 29 第四章樣品成分分析與機械性質表現 ......... 31 4.1 熱分析 .............. 31 4.2 XRF 元素模式與氧化物模式分析 ........ 32 4.3 XRD 晶相分析 ............ 33 4.4 SEM 表面形貌分析 ............ 36 4.5 機械性質測試 ............ 40 4.6 孔隙率分析 ............ 42 4.7 綜合討論 .............. 44 第五章爐碴濾水效果評估 ........... 45 5.1 爐碴濾磷後的濾片的表面形貌與產物分析 ...... 45 5.2 XRF 元素模式與氧化物模式分析 ........ 47 5.3 濾磷效能與pH 值變化 ........... 48 5.4 不同背景液下的濾磷效能 .......... 51 5.5 綜合討論 .............. 53 結論 ............... 55 未來展望 ............... 56 參考文獻 ............... 57

    [1] W. R. Stahel, "The circular economy," Nature, vol. 531, no. 7595, pp. 435-438, 2016.
    [2] E. MacArthur, "Towards the circular economy," Journal of Industrial Ecology, vol. 2, pp. 23-44, 2013.
    [3] A. Genovese, A. A. Acquaye, A. Figueroa, and S. L. Koh, "Sustainable supply chain management and the transition towards a circular economy: Evidence and some applications," Omega, vol. 66, pp. 344-357, 2017.
    [4] C. J. Shi, "Steel slag - Its production, processing, characteristics, and cementitious properties," Journal of Materials in Civil Engineering, vol. 16, no. 3, pp. 230-236, 2004.
    [5] H. Motz and J. Geiseler, "Products of steel slags an opportunity to save natural resources," Waste Management, vol. 21, no. 3, pp. 285-293, 2001.
    [6] S. Kumar, R. Kumar, and A. Bandopadhyay, "Innovative methodologies for the utilisation of wastes from metallurgical and allied industries," Resources Conservation and Recycling, vol. 48, no. 4, pp. 301-314, 2006.
    [7] P. J. Withers, D. G. Doody, and R. Sylvester-Bradley, "Achieving sustainable phosphorus use in food systems through circularisation," Sustainability, vol. 10, no. 6, p. 1804, 2018.
    [8] K. S. Le Corre, E. Valsami-Jones, P. Hobbs, and S. A. Parsons, "Phosphorus recovery from wastewater by struvite crystallization: A review," Critical Reviews in Environmental Science and Technology, vol. 39, no. 6, pp. 433-477, 2009.
    [9] L.-M. Whang, C. Filipe, and J. Park, "Model-based evaluation of competition between polyphosphate-and glycogen-accumulating organisms," Water Research, vol. 41, no. 6, pp. 1312-1324, 2007.
    [10] A. Drizo, C. Forget, R. P. Chapuis, and Y. Comeau, "Phosphorus removal by electric arc furnace steel slag and serpentinite," Water Research, vol. 40, no. 8, pp. 1547-1554, 2006.
    [11] A. Drizo, J. Cummings, D. Weber, E. Twohig, G. Druschel, and B. Bourke, "New evidence for rejuvenation of phosphorus retention capacity in EAF steel slag," Environmental Science & Technology, vol. 42, no. 16, pp. 6191-6197, 2008.
    [12] C. Barca, S. Troesch, D. Meyer, P. Drissen, Y. Andres, and F. Chazarenc, "Steel Slag Filters to Upgrade Phosphorus Removal in Constructed Wetlands: Two Years of Field Experiments," Environmental Science & Technology, vol. 47, no. 1, pp. 549-556, 2013.
    [13] B. Das, S. Prakash, P. S. R. Reddy, and V. N. Misra, "An overview of utilization of slag and sludge from steel industries," Resources Conservation and Recycling, vol. 50, no. 1, pp. 40-57, 2007.
    [14] S. Petzet, B. Peplinski, and P. Cornel, "On wet chemical phosphorus recovery from sewage sludge ash by acidic or alkaline leaching and an optimized combination of both," Water Research, vol. 46, no. 12, pp. 3769-3780, 2012.
    [15] A. Mamdouh, N. A. Safiee, F. Hejazi, and A. Azarkerdar, "Application of waste from steel industry to construction material: A Review," in IOP Conference Series: Earth and Environmental Science, 2019, vol. 357, no. 1: IOP Publishing, p. 012026.
    [16] Y. N. Dhoble and S. Ahmed, "Review on the innovative uses of steel slag for waste minimization," Journal of Material Cycles and Waste Management, vol. 20, no. 3, pp. 1373-1382, 2018.
    [17] 李育成, 楊金成, 蔡立文, and 俞明塗, "轉爐渣改質技術在中鋼之應用與突破," 鑛冶: 中國鑛冶工程學會會刊, vol. 58, no. 4, pp. 23-32, 2014.
    [18] I. Z. Yildirim and M. Prezzi, "Experimental evaluation of EAF ladle steel slag as a geo-fill material: Mineralogical, physical & mechanical properties," Construction and Building Materials, vol. 154, pp. 23-33, 2017.
    [19] T. A. Branca, V. Colla, and R. Valentini, "A way to reduce environmental impact of ladle furnace slag," Ironmaking & Steelmaking, vol. 36, no. 8, pp. 597-602, 2009.
    [20] X. Zhang, J. Chen, J. Jiang, J. Li, R. D. Tyagi, and R. Y. Surampalli, "The potential utilization of slag generated from iron-and steelmaking industries: a review," Environmental Geochemistry and Health, vol. 42, no. 5, pp. 1321-1334, 2020.
    [21] I. Z. Yildirim and M. Prezzi, "Chemical, mineralogical, and morphological properties of steel slag," Advances in Civil Engineering, vol. 2011, 2011.
    [22] I. o. M. S. C. o. t. S. E. o. D. R. Intakes, Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. National Academies Press (US), 1997.
    [23] 楊佳穎, "脫硫渣與電弧爐氧化渣去除磷之比較," 淡江大學水資源及環境工程學系碩士班學位論文, pp. 1-84, 2015.
    [24] J. Von Horn and C. Sartorius, "Impact of supply and demand on the price development of phosphate (fertilizer)," in Proceedings of the International Conference on Nutrient Recovery from Wastewater Streams, 2009, pp. 10-13.
    [25] A. Amann, O. Zoboli, J. Krampe, H. Rechberger, M. Zessner, and L. Egle, "Environmental impacts of phosphorus recovery from municipal wastewater," Resources, Conservation and Recycling, vol. 130, pp. 127-139, 2018.
    [26] A. Melland, O. Fenton, and P. Jordan, "Effects of agricultural land management changes on surface water quality: A review of meso-scale catchment research," Environmental Science & Policy, vol. 84, pp. 19-25, 2018.
    [27] J. Nieminen, "Phosphorus recovery and recycling from municipal wastewater sludge," Vesitalous, vol. 3, pp. 15-17, 2010.
    [28] S. Sengupta, T. Nawaz, and J. Beaudry, "Nitrogen and phosphorus recovery from wastewater," Current Pollution Reports, vol. 1, no. 3, pp. 155-166, 2015.
    [29] L. M. Whang and J. K. Park, "Competition between polyphosphate‐and glycogen‐accumulating organisms in enhanced‐biological‐phosphorus‐removal systems: Effect of temperature and sludge age," Water Environment Research, vol. 78, no. 1, pp. 4-11, 2006.
    [30] M. Y. Zuo, G. Renman, J. P. Gustafsson, and W. Klysubun, "Phosphorus removal by slag depends on its mineralogical composition: A comparative study of AOD and EAF slags," Journal of Water Process Engineering, vol. 25, pp. 105-112, 2018.
    [31] M. Y. Zuo, G. Renman, J. P. Gustafsson, and A. Renman, "Phosphorus removal performance and speciation in virgin and modified argon oxygen decarburisation slag designed for wastewater treatment," Water Research, vol. 87, pp. 271-281, 2015.
    [32] D. Claveau-Mallet, S. Wallace, and Y. Comeau, "Removal of phosphorus, fluoride and metals from a gypsum mining leachate using steel slag filters," Water Research, vol. 47, no. 4, pp. 1512-1520, 2013.
    [33] V. K. Jha, Y. Kameshima, A. Nakajima, and K. Okada, "Utilization of steel-making slag for the uptake of ammonium and phosphate ions from aqueous solution," Journal of Hazardous Materials, vol. 156, no. 1-3, pp. 156-162, 2008.
    [34] M. Y. Zuo, G. Renman, J. P. Gustafsson, and W. Klysubun, "Dual slag filters for enhanced phosphorus removal from domestic waste water: performance and mechanisms," Environmental Science and Pollution Research, vol. 25, no. 8, pp. 7391-7400, 2018.
    [35] C. Barca, C. Gerente, D. Meyer, F. Cliazarenc, and Y. Andres, "Phosphate removal from synthetic and real wastewater using steel slags produced in Europe," Water Research, vol. 46, no. 7, pp. 2376-2384, 2012.
    [36] G. Kotan and A. Ş. Bor, "Production and characterization of high porosity Ti-6Al-4V foam by space holder technique in powder metallurgy," Turkish Journal of Engineering and Environmental Sciences, vol. 31, no. 3, pp. 149-156, 2007.
    [37] S. W. Kim, H.-D. Jung, M.-H. Kang, H.-E. Kim, Y.-H. Koh, and Y. Estrin, "Fabrication of porous titanium scaffold with controlled porous structure and net-shape using magnesium as spacer," Materials Science and Engineering: C, vol. 33, no. 5, pp. 2808-2815, 2013.
    [38] Z. Esen and Ş. Bor, "Processing of titanium foams using magnesium spacer particles," Scripta Materialia, vol. 56, no. 5, pp. 341-344, 2007.
    [39] N. Jha, D. Mondal, J. D. Majumdar, A. Badkul, A. Jha, and A. Khare, "Highly porous open cell Ti-foam using NaCl as temporary space holder through powder metallurgy route," Materials & Design, vol. 47, pp. 810-819, 2013.
    [40] O. Smorygo, A. Marukovich, V. Mikutski, A. Gokhale, G. J. Reddy, and J. V. Kumar, "High-porosity titanium foams by powder coated space holder compaction method," Materials Letters, vol. 83, pp. 17-19, 2012.
    [41] A. Bansiddhi and D. C. Dunand, "Shape-memory NiTi foams produced by solid-state replication with NaF," Intermetallics, vol. 15, no. 12, pp. 1612-1622, 2007.
    [42] 郭曜升, "不同孔隙率雙層同心圓結構多孔鈦的機械性質與生物相容性," 成功大學材料科學及工程學系碩士班學位論文,2019.
    [43] 郭弘毅, "加入不同比例澱粉對多孔性聚乙烯醇縮甲醛泡棉 (PVF) 物性影響的研究," 2012.
    [44] T. Aydoğmuş and Ş. Bor, "Processing of porous TiNi alloys using magnesium as space holder," Journal of Alloys and Compounds, vol. 478, no. 1-2, pp. 705-710, 2009.
    [45] S. Fujibayashi, M. Neo, H.-M. Kim, T. Kokubo, and T. Nakamura, "Osteoinduction of porous bioactive titanium metal," Biomaterials, vol. 25, no. 3, pp. 443-450, 2004.
    [46] M. U. Minhas, M. Ahmad, L. Ali, and M. Sohail, "Synthesis of chemically cross-linked polyvinyl alcohol-co-poly (methacrylic acid) hydrogels by copolymerization; a potential graft-polymeric carrier for oral delivery of 5-fluorouracil," DARU Journal of Pharmaceutical Sciences, vol. 21, no. 1, p. 44, 2013.
    [47] Y.-h. Li, L.-j. Rong, and Y.-y. Li, "Pore characteristics of porous NiTi alloy fabricated by combustion synthesis," Journal of Alloys and Compounds, vol. 325, no. 1-2, pp. 259-262, 2001.
    [48] I.-H. Oh, N. Nomura, and S. Hanada, "Microstructures and mechanical properties of porous titanium compacts prepared by powder sintering," Materials Transactions, vol. 43, no. 3, pp. 443-446, 2002.
    [49] R. Rice, "Comparison of stress concentration versus minimum solid area based mechanical property-porosity relations," Journal of Materials Science, vol. 28, no. 8, pp. 2187-2190, 1993.
    [50] D.-M. Liu, "Influence of porosity and pore size on the compressive strength of porous hydroxyapatite ceramic," Ceramics International, vol. 23, no. 2, pp. 135-139, 1997.
    [51] J. She and T. Ohji, "Fabrication and characterization of highly porous mullite ceramics," Materials Chemistry and Physics, vol. 80, no. 3, pp. 610-614, 2003.
    [52] G. De Peppo, A. Palmquist, P. Borchardt, M. Lennerås, J. Hyllner, A. Snis, J. Lausmaa, P. Thomsen, and C. Karlsson, "Free-form-fabricated commercially pure Ti and Ti6Al4V porous scaffolds support the growth of human embryonic stem cell-derived mesodermal progenitors," The Scientific World Journal, vol. 2012, 2012.
    [53] 刘培生, 多孔材料引论. 清华大学出版社有限公司, 2004.
    [54] I. H. Oh, N. Nomura, N. Masahashi, and S. Hanada, "Mechanical properties of porous titanium compacts prepared by powder sintering," Scripta Materialia, vol. 49, no. 12, pp. 1197-1202, 2003.
    [55] X. Li, C. Wang, W. Zhang, and Y. Li, "Properties of a porous Ti—6Al—4V implant with a low stiffness for biomedical application," Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 223, no. 2, pp. 173-178, 2009.
    [56] 黃坤祥, 粉末冶金學. 中華民國粉末冶金協會, 2003.
    [57] J. Shi, "Solid state sintering of ceramics: pore microstructure models, densification equations and applications," Journal of Materials Science, vol. 34, no. 15, pp. 3801-3812, 1999.
    [58] P. W. Voorhees, "Ostwald ripening of two-phase mixtures," Annual Review of Materials Science, vol. 22, no. 1, pp. 197-215, 1992.
    [59] R. M. German, P. Suri, and S. J. Park, "liquid phase sintering," Journal of Materials Science, vol. 44, no. 1, pp. 1-39, 2009.
    [60] D. M. Proctor, K. A. Fehling, E. C. Shay, J. L. Wittenborn, J. J. Green, C. Avent, R. D. Bigham, M. Connolly, B. Lee, T. O. Shepker, and M. A. Zak, "Physical and chemical characteristics of blast furnace, basic oxygen furnace, and electric arc furnace steel industry slags," Environmental Science & Technology, vol. 34, no. 8, pp. 1576-1582, 2000.
    [61] W. Chi, D. Jiang, Z. Huang, and S. Tan, "Sintering behavior of porous SiC ceramics," Ceramics International, vol. 30, no. 6, pp. 869-874, 2004.
    [62] A. Coats and J. Redfern, "Thermogravimetric analysis. A review," Analyst, vol. 88, no. 1053, pp. 906-924, 1963.
    [63] L. De Viguerie, V. A. Sole, and P. Walter, "Multilayers quantitative X-ray fluorescence analysis applied to easel paintings," Analytical and Bioanalytical Chemistry, vol. 395, no. 7, pp. 2015-2020, 2009.
    [64] G. Pashkova and A. Revenko, "A review of application of total reflection X-ray fluorescence spectrometry to water analysis," Applied Spectroscopy Reviews, vol. 50, no. 6, pp. 443-472, 2015.
    [65] W. D. Callister and D. G. Rethwisch, Materials science and engineering. John wiley & sons NY, 2011.
    [66] 陳力群, 莊勝傑, and 楊國和, "聚乙烯醇添加劑對精密鑄造陶殼模性能之影響," 鑄造工程學刊, vol. 33, no. 4, pp. 31-36, 2007.
    [67] S. Choi, J.-M. Kim, D. Han, and J.-H. Kim, "Hydration properties of ladle furnace slag powder rapidly cooled by air," Construction and Building Materials, vol. 113, pp. 682-690, 2016.
    [68] L. H. Cao, C. J. Liu, Q. Zhao, and M. F. Jiang, "Analysis on the stability of chromium in mineral phases in stainless steel slag," Metallurgical Research & Technology, vol. 115, no. 1, p. 8, 2018.
    [69] V. Jha, Y. Kameshima, A. Nakajima, and K. Okada, "Hazardous ions uptake behavior of thermally activated steel-making slag," Journal of Hazardous Materials, vol. 114, no. 1-3, pp. 139-144, 2004.
    [70] R. Howie, J. Zussman, and W. Deer, An introduction to the rock-forming minerals. Longman, 1992.
    [71] H. Hallberg, "A modified level set approach to 2D modeling of dynamic recrystallization," Modelling and Simulation in Materials Science and Engineering, vol. 21, no. 8, p. 085012, 2013.
    [72] L. Lim, P. Wong, and M. Jan, "Microstructural evolution during sintering of near-monosized agglomerate-free submicron alumina powder compacts," Acta Materialia, vol. 48, no. 9, pp. 2263-2275, 2000.
    [73] L. Zhang, S. Xie, W. Xin, X. Li, S. Liu, and L. Xu, "Crystallization and morphology of mordenite zeolite influenced by various parameters in organic-free synthesis," Materials Research Bulletin, vol. 46, no. 6, pp. 894-900, 2011.
    [74] K. László, P. Podkościelny, and A. Dąbrowski, "Heterogeneity of activated carbons with different surface chemistry in adsorption of phenol from aqueous solutions," Applied Surface Science, vol. 252, no. 16, pp. 5752-5762, 2006.
    [75] H. B. Yin, C. H. Yang, Y. X. Jia, H. U. Chen, and X. H. Cu, "Dual removal of phosphate and ammonium from high concentrations of aquaculture wastewaters using an efficient two-stage infiltration system," Science of the Total Environment, vol. 635, pp. 936-946, 2018.

    下載圖示 校內:2025-07-01公開
    校外:2025-07-01公開
    QR CODE