| 研究生: |
龔曉妍 Kung, Shaio-Yen |
|---|---|
| 論文名稱: |
沃土穩定砂-膨潤土力學行為之研究 Study of Sand-bentonite Stabilized with Sugarcane Press Mud |
| 指導教授: |
洪瀞
Hung, Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 垃圾掩埋場襯層 、砂-膨潤土 、沃土 、土壤穩定 、力學性質 |
| 外文關鍵詞: | Landfills linear, Sand-bentonite, Press mud, mechanical properties, Stabilization |
| 相關次數: | 點閱:182 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣於2022年所公布資料中總計317處垃圾掩埋場,121處掩埋場仍營運使用中,而196處屬停用、復育或封閉。除了營運中的垃圾掩埋場可能會發生外溢污染地下水環境和廢氣產生惡臭等,停止使用的掩埋場亦可能會環境產生不良的影響,故如何配置有效之阻隔是為掩埋場設置最重要一環。目前我國垃圾掩埋場配置僅使用單一種阻水層作為掩埋場襯層,為了提供其他具工程實務應用之配置方式,本研究參考國外使用回填材料於掩埋場阻水襯墊之分析結果,並依照我國所需設置規範進行相關可行性之完整力學試驗。除此之外,砂-膨潤土具有吸水膨脹特性、較低水力傳導係數和良好密封性等優點,因此常作為回填材料被使用於垃圾掩埋場。
本研究採用台南市安平地區海砂混合澳洲SIBELCO開採膨潤土作為回填材料進行基本物理性實驗,並嘗試使用善化地區善化糖廠之沃土作為穩定劑,探討未添加與添加穩定劑對回填材料的力學特性與長期穩定及安全性。一系列的力學試驗包含標準夯實試驗、無圍壓縮試驗、壓密試驗、自由回脹試驗及三維體積收縮試驗,檢視穩定劑添加於回填材料之力學行為,並選出最佳之穩定劑添加配比於回填材料。
根據試驗結果顯示,兩種不同膨潤土重量比例混合海砂之砂-膨潤土(SB10及SB15)不論是添加4%、8%或 12%的沃土(PM)穩定劑都能夠有效提升其力學行為。除了能夠有效提高回填材料的剪力強度外,沃土穩定劑的添加還有助於提升試體在受剪過程中的延展性,且在體積變化下所造成的影響非常小,得防止膨脹趨勢,降低膨脹潛能與提高收縮限度。兩種不同砂-膨潤土回填材料在12%穩定劑添加量下改善效果較佳。由XRF化學分析表分析顯示,沃土含有有機物質CaCO3,CaCO3與水接觸後會產生鈣離子,除了提供填料效應,也會加速與無定形二氧化矽化合物進行火山灰反應,從而提供更多的水化產物(C-S-H),並使試體更緊密與壓實。此外,沃土成分中含有纖維,使其在受剪階段可提高黏土顆粒與纖維之間相互作用和聯鎖機制,在應力-應變行為下變得更具延展性。最後,添加成效隨著穩定劑含量增加而上升,惟其可能存在極限值,未來仍需要更多的實驗去驗證。
In landfills, spills often occur, polluting the groundwater environment, and creating foul odors, seriously affecting the environment. Considering the above, how to constrain the contaminants spills into the groundwater system is the most important part of landfill. Therefore, a reference to the results of overseas analysis of the water-stop lining was made. Their engineered liners contain a buffer material that is typically a carefully measured blend of bentonite and pure sand. Further, to study the influences of press mud (PM) obtained from a sugar factory in Shanhua District, Tainan, on the engineering behavior of sand-bentonite, the mechanical properties of sand bentonite mixtures with 10% and 15% bentonite contents were investigated in the laboratory. In addition, various PM contents were used as an additive to stabilize, the sand-bentonite mixtures. The Laboratory tests include compaction tests, unconfined compressive tests, one-dimensional consolidation tests, free swelling and shrinkage tests leading to the PM content that best stabilized the sand-bentonite mixtures. The results of this experimental investigation indicate that adding PM increased the unconfined compressive strength of sand-bentonite mixtures with an increase in curing time and additive contents, and the addition of the stabilizer also helped to increase the ductility, while the sand-bentonite volume change decreasing with increasing PM contents. Based on the reasonable laboratory test results, it can be noted that the sand-bentonite mixtures can be successfully stabilized with PM.
1. 單信瑜(1998),掩埋場阻水層材料與效能評估方法,地工技術,第71期,第65-82頁。
2. 行政院國家科學委員會(2008),廢棄物掩埋場穩定性最佳化設計。
3. 台灣電力公司(2015),低放射性廢棄物最終處置技術評估報告,定稿版。
4. 台灣糖業公司(2015),糖の職人誌-甘蔗育種:延綿百年之珍貴資產。
5. 台灣糖業公司(2015),糖の職人誌-製糖煉糖特殊糖──淺談糖廠經營變革
6. ASTM C33(1996). Standard Specification for Concrete Aggregates. American Society for Testing of Materials, West Conshohocken, PA.
7. Annor, A. (1999). A study of the characteristics and behaviour of composite backfill material.
8. ASTM D4318 (2000). Standard test methods for liquid limit, plastic limit and plasticity index of soils. American Society for Testing of Materials, West Conshohocken, USA, pp 561–572
9. Adam, E. A., & Agib, A. R. A. (2001). Compressed stabilised earth block manufacture in Sudan. France, Paris: Printed by Graphoprint for UNESCO.
10. Al-Rawas, A. A., Taha, R., Nelson, J. D., Al-Shab, B. T., & Al-Siyabi, H. (2002). A comparative evaluation of various additives used in the stabilization of expansive soils. Geotechnical Testing Journal, 25(2), 199-209.
11. ASTM D2435-04. (2004). Standard test methods for one-dimensional consolidation properties of soils using incremental loading., American Society for Testing of Materials, West Conshohocken West Conshohocken, PA.
12. ASTM D854-05 (2007). Standard Test Method for California Bearing Ratio of Laboratory-Compacted Soils. ASTM international, West Conshohocken, PA.
13. Apted, M., & Ahn, J. (2010). Multiple-barrier geological repository design and operation strategies for safe disposal of radioactive materials. In Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste (pp. 3-28). Woodhead Publishing.
14. Amu, O. O., Ogunniyi, S. A., & Oladeji, O. O. (2011). Geotechnical properties of lateritic soil stabilized with sugarcane straw ash. American journal of Scientific and industrial Research, 2(2), 323-331.
15. Alavéz-Ramírez, R., Montes-García, P., Martínez-Reyes, J., Altamirano-Juárez, D. C., & Gochi-Ponce, Y. (2012). The use of sugarcane bagasse ash and lime to improve the durability and mechanical properties of compacted soil blocks. Construction and Building Materials, 34,296-305.
16. ASTM D698-12. (2012). Standard Test Methods for laboratory Compaction Characteristics of Soil Using Standard Effort (12400 Ft-Lbf/Ft3 (600 kN-M/m3)). American Society for Testing of Materials, West Conshohocken, PA.
17. ASTM D4546 -14(2014). Standard test methods for one-dimensional swell or collapse of soils. American Society for Testing of Materials, West Conshohocken, PA.
18. Akgün, H., Ada, M., & Koçkar, M. K. (2015). Performance assessment of a bentonite–sand mixture for nuclear waste isolation at the potential Akkuyu Nuclear Waste Disposal Site, southern Turkey. Environmental Earth Sciences, 73(10),6101-6116.
19. ASTM D2166/D2166M-16. (2016). Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. American Society for Testing of Materials, West Conshohocken, PA.
20. Afrin, H. (2017). A review on different types soil stabilization techniques. International Journal of Transportation Engineering and Technology, 3(2), 19-24.
21. Akgün, H., & Koçkar, M. K. (2018). Evaluation of a sand bentonite mixture as a shaft/borehole sealing material. Applied Clay Science, 164, 34-43.
22. ASTM D4949-18(2018). Standard Test Method for Polyurethane Raw Materials: Determination of Specific Gravity of Polyols. American Society for Testing of Materials, West Conshohocken, PA.
23. Bosscher, P. J., & Connell, D. E. (1988). Measurement and analysis of jointing properties in fine-grained soils. Journal of Geotechnical Engineering, 114(7), 826-843.
24. Balakrishnan, M., & Batra, V. S. (2011). Valorization of solid waste in sugar factories with possible applications in India: A review. Journal of Environmental Management, 92(11), 2886-2891.
25. Bojnourdi, S., Narani, S. S., Abbaspour, M., Ebadi, T., & Hosseini, S. M. M. (2020). Hydro-mechanical properties of unreinforced and fiber-reinforced used motor oil (UMO)-contaminated sand-bentonite mixtures. Engineering Geology, 279, 105886.
26. Clem, A. G., & Doehler, R. W. (1961). Industrial applications of bentonite. Clays and Clay minerals, 10(1), 272-283.
27. Devaney, F.D. (1956) Process of Preparing Indurated Pallets of Iron Ore Fines. US Patent 2,713,172.
28. Dutta, J., & Mishra, A. K. (2015). A study on the influence of inorganic salts on the behaviour of compacted bentonites. Applied Clay Science, 116, 85-92.
29. Dang, L. C., Fatahi, B., & Khabbaz, H. (2016). Behaviour of expansive soils stabilized with hydrated lime and bagasse fibres. Procedia engineering, 143, 658-665.
30. EuroSoilStab (2002).Development of Design and Construction Methods to Stabilize Soft Organic Soils, Design Guide Soft Soil Stabilization. Industrial & Materials Technologies Programme (Brite- EuRam III), European Commission, CT97-0351,
31. Elsayed, M. T., Babiker, M. H., Abdelmalik, M. E., Mukhtar, O. N., & Montange, D. (2008). Impact of filter mud applications on the germination of sugarcane and small-seeded plants and on soil and sugarcane nitrogen contents. Bioresource technology, 99(10), 4164-4168.
32. Eren, E., & Afsin, B. (2008). An investigation of Cu (II) adsorption by raw and acid-activated bentonite: A combined potentiometric, thermodynamic, XRD, IR, DTA study. Journal of Hazardous materials, 151(2-3), 682-691.
33. Fletcher, P., & Sposito, G. (1989). The chemical modelling of clay/electrolyte interactions for montmorillonite. Clay Minerals, 24(2), 375-391.
34. Firoozi, A. A., Guney Olgun, C., Firoozi, A. A., & Baghini, M. S. (2017). Fundamentals of soil stabilization. International Journal of Geo-Engineering, 8(1), 1-16.
35. Farquhar, G. J. (2020). Experiences with liners using natural materials. In Landfilling of waste: Barriers (pp. 37-53). CRC Press.
36. Grim, R. E., & Guven, N. (2011). Bentonites: geology, mineralogy, properties and uses. Elsevier.
37. Gupta, N., Tripathi, S., & Balomajumder, C. (2011). Characterization of pressmud: A sugar industry waste. Fuel, 90(1), 389-394.
38. Giridhar, V., Gnaneswar, K., & Reddy, P. K. K. (2013). Effect of Sugar and Jaggery on Strength Properties of Concrete. The International Journal of Engineering and Science, 2(10), 1-6.
39. González, L. M. L., Reyes, I. P., Dewulf, J., Budde, J., Heiermann, M., & Vervaeren, H. (2014). Effect of liquid hot water pre-treatment on sugarcane press mud methane yield. Bioresource Technology, 169, 284-290.
40. Ghadr, S., Chen, C. S., Liu, C. H., & Hung, C. (2022). Mechanical behavior of sands reinforced with shredded face masks. Bulletin of Engineering Geology and the Environment, 81(8), 1-21.
41. Hoeks, J., Glas, H., Hofkamp, J., & Ryhiner, A. H. (1987). Bentonite liners for isolation of waste disposal sites. Waste Management & Research, 5(2), 93-105.
42. Iravanian, A., & Bilsel, H. (2016). Strength characterization of sand-bentonite mixtures and the effect of cement additives. Marine Georesources & Geotechnology, 34(3), 210-218.
43. Japan Nuclear Cyclic Development Institute, 1999. H12: Project to establish the scientific and technical base for HLW disposal in Japan, Supporting report 2, Repository engineering technology (in Japanese)
44. James, J., & Pandian, P. K. (2015). Soil stabilization as an avenue for reuse of solid wastes: a review. Acta Technica Napocensis: Civil Engineering and Architechture, 58(1), 50-76.
45. James, J., & Pandian, P. K. (2016). Geoenvironmental application of sugarcane press mud in lime stabilization of an expansive soil: a preliminary report. Australian Journal of Civil Engineering, 14(2), 114-122.
46. James, J., & Pandian, P. K. (2016). Industrial wastes as auxiliary additives to cement/lime stabilization of soils. Advances in Civil Engineering, 2016.
47. Kleppe, J. H., & Olson, R. E. (1985). Desiccation cracking of soil barriers (Vol. 263). ASTM International.
48. Kenney, T. C., Veen, W. V., Swallow, M. A., & Sungaila, M. A. (1992). Hydraulic conductivity of compacted bentonite–sand mixtures. Canadian Geotechnical Journal, 29(3), 364-374.
49. Komine, H., & Ogata, N. (1999). Experimental study on swelling characteristics of sand-bentonite mixture for nuclear waste disposal. Soils and foundations, 39(2), 83-97.
50. Koch, D. (2002). Bentonites as a basic material for technical base liners and site encapsulation cut-off walls. Applied clay science, 21(1-2), 1-11.
51. Kumar, S., & Yong, W. L. (2002). Effect of bentonite on compacted clay landfill barriers. Soil and sediment contamination, 11(1), 71-89.
52. Komine, H. (2004). Simplified evaluation on hydraulic conductivities of sand–bentonite mixture backfill. Applied clay science, 26(1-4), 13-19.
53. Kaufhold, S., Dohrmann, R., Koch, D., & Houben, G. (2008). The pH of aqueous bentonite suspensions. Clays and Clay Minerals, 56(3), 338-343.
54. Klee H. (2008) The cement sustainability initiative. Future technologies and innovations in the cement sector in china: modeling the future cement industry, Beijing, Chin
55. Komine, H. (2010). Predicting hydraulic conductivity of sand–bentonite mixture backfill before and after swelling deformation for underground disposal of radioactive wastes. Engineering Geology, 114(3-4), 123-134.
56. Khemissa, M., & Mahamedi, A. (2014). Cement and lime mixture stabilization of an expansive overconsolidated clay. Applied Clay Science, 95, 104-110.
57. Lambe, T. W. (1958). The engineering behavior of compacted clay. Journal of the Soil Mechanics and Foundations Division, 84(2), 1655-1.
58. Luckham, P. F., & Rossi, S. (1999). The colloidal and rheological properties of bentonite suspensions. Advances in colloid and interface science, 82(1-3), 43-92.
59. Li, X. (2014). Shrinkage cracking of soils and cementitiously-stabilized soils: Mechanisms and modeling. Washington State University.
60. Murray, H. H. (1991). Overview—clay mineral applications. Applied clay science, 5(5-6), 379-395.
61. Mitchell, J. K., & Soga, K. (2005). Fundamentals of soil behavior (Vol. 3, p. USA). New York: John Wiley & Sons.
62. Murray, H. H. (2006). Bentonite applications. Developments in Clay Science, 2, 111-130.
63. Mathur, P., & Mathur, N. K. (2007). Guar and Tamarind Hydrocolloids. Science Tech Entrepreneur.
64. Mishra, A. K., Ohtsubo, M., Li, L. Y., & Higashi, T. (2010). Influence of the bentonite on the consolidation behaviour of soil–bentonite mixtures. Carbonates and evaporites, 25(1), 43-49.
65. Mukherjee, K., & Mishra, A. K. (2020). Experimental and numerical study on compacted sand bentonite-tire fiber composite for landfill application. In Advances in computer methods and geomechanics (pp. 263-275). Springer, Singapore.
66. Mukherjee, K., & Mishra, A. K. (2020). Undrained performance of sustainable compacted sand-bentonite–glass fiber composite for landfill application. Journal of Cleaner Production, 244, 118662.
67. Olson, R. E., & Mesri, G. (1970). Mechanisms controlling compressibility of clays. Journal of the Soil Mechanics and Foundations Division, 96(6), 1863-1878.
68. Partha, N., & Sivasubramanian, V. (2006). Recovery of chemicals from pressmud-a sugar industry waste. Indian Chemical Engineer, 48(3), 160-163.
69. Palmeira, E. M., Tatsuoka, F., Bathurst, R. J., Stevenson, P. E., & Zornberg, J. G. (2008). Advances in geosynthetics materials and applications for soil reinforcement and environmental protection works. Electronic Journal of Geotechnical Engineering, 13, 1-38.
70. Rasul, M. G., Rudolph, V., & Carsky, M. (1999). Physical properties of bagasse. Fuel, 78(8), 905-910.
71. Radwan, M. K., Mo, K. H., Onn, C. C., Ng, C. G., & Ling, T. C. (2021). Waste press mud in enhancing the performance of glass powder blended cement. Construction and Building Materials, 313, 125469.
72. Stewart, D. I., Studds, P. G., & Cousens, T. W. (2003). The factors controlling the engineering properties of bentonite-enhanced sand. Applied Clay Science, 23(1-4), 97-110.
73. Seth, R., Chandra, R., Kumar, N., & Tyagi, A. K. (2005). Utilization of composted sugar industry waste (pressmud) to improve properties of sodic soil for rice cultivation. Journal of Environmental Science & Engineering, 47(3), 212-217.
74. Sen, B., & Chandra, T. S. (2007). Chemolytic and solid-state spectroscopic evaluation of organic matter transformation during vermicomposting of sugar industry wastes. Bioresource technology, 98(8), 1680-1683.
75. Sun, D. A., Cui, H., & Sun, W. (2009). Swelling of compacted sand–bentonite mixtures. Applied Clay Science, 43(3-4), 485-492.
76. Solomon, S. (2011). Sugarcane by-products based industries in India. Sugar Tech, 13(4), 408-416.
77. Srikanth, V., & Mishra, A. K. (2016). A laboratory study on the geotechnical characteristics of sand–bentonite mixtures and the role of particle size of sand. International Journal of Geosynthetics and Ground Engineering, 2(1), 1-10.
78. Sharma, B., & Deka, P. (2019). A study on compressibility, swelling and permeability behaviour of bentonite–sand mixture. In Geotechnical Characterisation and Geoenvironmental Engineering (pp. 43-50). Springer, Singapore.
79. Townsend, D. L., & Klym, T. W. (1966). Durability of lime-stabilized soils. Highway Research Record, 139, 25-41.
80. Tay, Y. Y., Stewart, D. I., & Cousens, T. W. (2001). Shrinkage and desiccation cracking in bentonite–sand landfill liners. Engineering Geology, 60(1-4), 263-274.
81. Tastan, E. O., Edil, T. B., Benson, C. H., & Aydilek, A. H. (2011). Stabilization of organic soils with fly ash. Journal of geotechnical and Geoenvironmental Engineering, 137(9), 819-833.
82. Van Olphen, H. (1977). An introduction to clay colloid chemistry: for clay technologists, geologists, and soil scientists.
83. Worrell, E., Price, L., Martin, N., Hendriks, C., & Meida, L. O. (2001). Carbon dioxide emissions from the global cement industry. Annual review of energy and the environment, 26(1), 303-329.
84. Wersin, P., Johnson, L. H., & McKinley, I. G. (2007). Performance of the bentonite barrier at temperatures beyond 100 C: A critical review. Physics and Chemistry of the Earth, Parts A/B/C, 32(8-14), 780-788.
85. Yetimoglu, T., & Salbas, O. (2003). A study on shear strength of sands reinforced with randomly distributed discrete fibers. Geotextiles and Geomembranes, 21(2), 103-110.
86. Zornberg, J. G. (2017). Functions and applications of geosynthetics in roadways. Procedia engineering, 189, 298-306.
87. Zhang, J., Li, M., Taheri, A., Zhang, W., Wu, Z., & Song, W. (2019). Properties and application of backfill materials in coal mines in China. Minerals, 9(1), 53.