| 研究生: |
范雅雯 Fan, Ya-Wen |
|---|---|
| 論文名稱: |
具髓鞘神經纖維之原子力顯微鏡壓痕測試及有限元素分析 In Vitro Atomic Force Microscopy Indentation tests and Finite Element Analysis of Myelinated Nerve Fibers |
| 指導教授: |
朱銘祥
Ju, Ming-Shaung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 具髓鞘神經纖維 、原子力顯微鏡 、機械性質 、糖尿病變 、有限元素分析 |
| 外文關鍵詞: | myelinated nerve fiber, atomic force microscopy, mechanical properties, diabetic, finite element analysis |
| 相關次數: | 點閱:90 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
神經系統是動物的協調中樞,其中負責絕緣、傳導及修復受損軸突的髓鞘是非常重要的結構。若周邊神經產生病變會降低偵測危險的能力,甚至導致死亡,例如糖尿病引起的慢性併發症及局部脫髓鞘化。因此了解具髓鞘神經纖維徑向機械性質可能有助於預防永久性神經損害。本研究以微針梳整正常(控制組)與糖尿病(實驗組) SD 大鼠坐骨神經束,取得單一具髓鞘神經纖維,在原子力顯微鏡的自選力-集壓痕模式下,得到其形貌並準確測量神經纖維的彈性力學特性,由接觸力量-壓深曲線,配合 Bilodeau 模型估測視楊氏模數 , 發現控制組為27.57±11.08 kPa,實驗組為 45.02±33.96 kPa 。 此外, 利用穿透式電子顯微鏡的橫截面影像,建立二維有限元素模型,以彈性與超彈性材料描述具髓鞘神經纖維的非線性彈性響應,並分別估測軸突及髓鞘的材料性質。逆向有限元素分析結果顯示實驗組的髓鞘切楊氏模數大於控制組,且髓鞘是徑向負載下主要承受應力的結構。
The coordination center of animals is the nerve system, in which the myelin is an important structure to provide isolation, saltatory signal transmission and repairing injured nerve. Peripheral neuropathies, such as diabetic polyneuropathy (DPN), are believed to be related to bnormal
mechanical behavior of myelin and myelinated axon, which may even lead to death due to the decreased ability to detect danger. Understanding the transverse mechanical properties of myelinated nerve fiber may aid preventing permanent nerve injuries in this kind of patients. A micro-needle was employed to tease normal and diabetic Sprague -Dawley rat sciatic nerves into isolated nerve fibers. An AFM with flexible multi-indentation tests was used to obtain the topography and elastic properties of the isolated nerve fibers. With a maximum indentation depth of 9% of height, the force-indentation curve was fitted with Bilodeau model to estimate apparent Young’s modulus, which is 27.57±11.08 kPa in normal group and 45.02±33.96 kPa in diabetic group. A two-dimensional finite element model was built based on the transmission electron microscopy(TEM)images of rehydrated myelinated nerve fiber. The stress -strain relationships of axon and myelin were postulated as a linear elastic model and a hyperelastic model, respectively. The inverse finite element analysis was used to estimate
the material parameters. The results showed that tangential Young’s modulus of diabetic myelin was higher, and myelin is the main structure to bear radial stress.
[1] Multiple Sclerosis Research,
http://multiple-sclerosis-research.blogspot.tw/2011/11/myelin-imaging.
html.
[2] 劉亮廷, 臨床神經解剖學. 2003, 臺北縣: 藝軒.
[3] B. Alberts, J. A., J. Lewis, M. Raff, K. Roberts, and P. Walter,
Molecular Biology of the Cell. 2007, New York: Garland Science.
[4] M.R.K. Mofrad and R.D. Kamm, Cytoskeletal mechanics. 2006, New
York: Cambridge University Press.
[5] B. Garbaya, A.M. Heapec, F. Sargueila, and C. Cassagnea, "Myelin
synthesis in the peripheral nervous system". Progress in Neurobiology,
2000, Vol. 61, No. 3, pp. 267-304.
[6] J.A. Edgardo and S.S. Steven, "On the molecular architecture of
myelinated fibers". Histochem Cell Biol, 2000, Vol. 113, No. 1, pp.
1-18.
[7] A. Lavdas and R. Matsas, "Schwann Cell Morphology", in New
Encyclopedia of Neuroscience, L.R. Squire, Editor 2009, Oxford:
Academic Press, p. 475-484.
[8] G. Lundborg, Nerve injury and repair regeneration, reconstruction,
and cortical remodeling 2004, Philadelphia: Elsevier/Churchill
Livingstone.
[9] S.S. Scherer and E.J. Arroyo, "Recent progress on the molecular
organization of myelinated axons". Journal of the Peripheral Nervous
System, 2002, Vol. 7, No. 1, pp. 1-12.
[10] H. Wang, B.E. Layton, and A.M. Sastry, "Nerve collagens from
diabetic and nondiabetic Sprague-Dawley and biobreeding rats: an
atomic force microscopy study". Diabetes Metab Res Rev, 2003, Vol. 19,
No. 4, pp. 288-298.
[11] P.J. Thornalley, "Glycation in diabetic neuropathy: Characteristics,
consequences, causes, and therapeutic options". International Review
of Neurobiology, 2002, Vol. 50, No., pp. 37-57.
[12] E. Tamura and G.J. Parry, "Severe radicular pathology in rats with
longstanding diabetes". JOURNAL OF THE NEUROLOGICAL
SCIENCES, 1994 Vol. 127, No. 1, pp. 29-35
[13] 陳榮健, "類線性黏彈理論於正常與糖尿病變周邊神經組織在位力
學與類神經細胞力學之研究", 2010, 國立成功大學機械工程研究所
博士論文.
[14] 陳煜欣, "有限元素模型與光學同調斷層掃描術於周邊神經組織之
黏彈性力學之研究", 2012, 國立成功大學機械系統工程研究所碩士
80
論文.
[15] I.N. Sneddon, "The relation between load and penetration in the
axisymmetric Boussinesq problem for a punch of arbitrary profile". Int.
J.Eng. Sci, 1965, Vol. 3, No. 1, pp. 47-57.
[16] G.G.Bilodeau, "Regular Pyramid Punch Problem". Journal of Applied
Mechanics, 1992, Vol. 59, No. 3, pp. 519-523.
[17] K.D. Costa and F.C.P. Yin, "Analysis of indentation: Implications for
measuring mechanical properties with atomic force microscopy".
ASME, 1999, Vol. 121, No. 5, pp. 462-471.
[18] K.D. Costa, A.J. Sim, and F.C. Yin, "Non-Hertzian approach to
analyzing mechanical properties of endothelial cells probed by atomic
force microscopy". J Biomech Eng, 2006, Vol. 128, No. 2, pp. 176-84.
[19] 張嘉峰, "應用原子力顯維術於 PC12 類神經細胞之生物力學研究",
2006, 國立成功大學微機電系統工程研究所碩士論文.
[20] C.T. Chang, C.C.K. Lin, and M.S. Ju, "Morphology and
Ultrastructure-Related Local Mechanical Properties of Pc-12 Cells
Studied by Integrating Atomic Force Microscopy and
Immunofluorescence Imaging". Journal of Mechanics in Medicine and
Biology, 2012, Vol. 12, No. 5, pp. 1250032 (21).
[21] W.C. Huang, J.D. Liao, C.C. Lin, and M.S. Ju, "Depth-sensing
nano-indentation on a myelinated axon at various stages".
Nanotechnology, 2011, Vol. 22, No. 27, pp. 275101(8).
[22] J.P.H. Savolainen and M. Haltia, "Proteins of peripheral nerve myelin
in diabetic neuropathy". Journal of the Neurological Sciences, 1972,
Vol. 16, No. 2, pp. 193-199.
[23] A.P. Mizisin, G.D. Shelton, S. Wagner, C. Rusbridge, and H.C. Powell,
"Myelin splitting, Schwann cell injury and demyelination in feline
diabetic neuropathy". Acta Neuropathol., 1998, Vol. 95, No. 2, pp.
171-174.
[24] B.E. Layton, A.M. Sastry, H. Wang, K.A. Sullivan, E.L. Feldman, T.E.
Komorowski, and M.A. Philbert, "Differences between collagen
morphologies, properties and distribution in diabetic and normal
biobreeding and Sprague-Dawley rat sciatic nerves". J Biomech, 2004,
Vol. 37, No. 6, pp. 879-88.
[25] G.J. Krinke, N. Vidotto, and E. Weber, "Teased-Fiber Technique for
Peripheral Myelinated Nerves: Methodology and Interpretation".
Toxicologic Pathology, 2000, Vol. 28, No. 1, pp. 113-121.
[26] M. Tatke and D. Doyle, "Effect of collagenase on nerve fibre teasing".
J Clin Pathol 1994, Vol. 47, No. 8, pp. 774-775.
[27] M. Melling, D. Karimian-Teherani, S. Mostler, and S. Hochmeister,
"Three-dimensional morphological characterization of optic nerve
81
fibers by atomic force microscopy and by scanning electron
microscopy". Microsc Microanal, 2005, Vol. 11, No. 4, pp. 333-40.
[28] A. Heredia, C.C. Bui, U. Suter, P. Young, and T.E. Schaffer, "AFM
combines functional and morphological analysis of peripheral
myelinated and demyelinated nerve fibers". Neuroimage, 2007, Vol. 37,
No. 4, pp. 1218-26.
[29] S.S. Sunderland, Nerves and nerve injuries. 2nd edition ed., 1978, New
York: Churchill Livingstone.
[30] E.T. HEDLEY -WHYTE and D.A. KIRSCHNER,
"MORPHOLOGICAL EVIDENCE OF ALTERATION IN MYELIN
STRUCTURE WITH MATURATION". Brain Research, 1976, Vol. 113
No. 3, pp. 487-497
[31] A.A.F. Sima and K. Sugimoto, "Experimental diabetic neuropathy: an
update". Diabetologia, 1999, Vol. 42, No. 7, pp. 773-788.
[32] E.T. Walbeehm, A. Afoke, T. de Wit, F. Holman, S.E. Hovius, and R.A.
Brown, "Mechanical functioning of peripheral nerves: linkage with the
"mushrooming" effect". Cell Tissue Res, 2004, Vol. 316, No. 1, pp.
115-21.
[33] D.L. Sherman and P.J. Brophy, "Mechanisms of axon ensheathment
and myelin growth". Nat Rev Neurosci, 2005, Vol. 6, No. 9, pp. 683-90.
[34] T. OSAWA, X.Y. FENG, M.Y. LIAO, K. MORIGUCHI, and Y.
NOZAKA, "Collagen Fibrils in the Peripheral Nerves". Connect
Tissue, 1999, Vol. 31, No. 4, pp. 235-241.
[35] R.P. Bunge, M.B. Bunge, and C.F. Eldridge, "LINKAGE BETWEEN
AXONAL ENSHEATHMENT AND BASAL LAMINA PRODUCTION
BY SCHWANN CELLS". Ann. Rev. Neurosci, 1986, Vol. 9, No., pp.
305-328.
[36] S.L. Crick and F.C.P. Yin, "Assessing micromechanical properties of
cells with atomic force microscopy: importance of the contact point".
Biomech Model Mechanobiol, 2007, Vol. 6, No. 3, pp. 199-210.
[37] M.B. Ulkay, A. Aktas, O. Aksoy, D. Haktanir, and H.H. Bozkurt,
"Comparison of Fixation Methods for Peripheral Nerve Fiber". Kafkas
Universitesi Veteriner Fakultesi Dergisi, 2013, Vol. 19, No. 1, pp.
51-56.
[38] A.F. Bower, "Applied Mechanics of Solids", 2011, Boca Raton: CRC
Press.
[39] N.H. Scott, "The Incremental Bulk Modulus, Young's Modulus and
Poisson's Ratio in Nonlinear Isotropic Elasticity: Physically
Reasonable Response". Mathematics and Mechanics of Solids, 2007,
Vol. 12, No. 5, pp. 526-542.
[40] R.J. Chen, C.C.K. Lin, and M.S. Ju, "Quasi-linear viscoelastic
properties of PC-12 neuron-like cells measured using atomic force
82
microscopy". Journal of the Chinese Institute of Engineers, 2011, Vol.
34, No. 3, pp. 325-335.
[41] Y. Fung, Biomechanics: mechanical properties of living tissues. Second
ed., 1993, New York: Springer-Verlag.