簡易檢索 / 詳目顯示

研究生: 范雅雯
Fan, Ya-Wen
論文名稱: 具髓鞘神經纖維之原子力顯微鏡壓痕測試及有限元素分析
In Vitro Atomic Force Microscopy Indentation tests and Finite Element Analysis of Myelinated Nerve Fibers
指導教授: 朱銘祥
Ju, Ming-Shaung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 87
中文關鍵詞: 具髓鞘神經纖維原子力顯微鏡機械性質糖尿病變有限元素分析
外文關鍵詞: myelinated nerve fiber, atomic force microscopy, mechanical properties, diabetic, finite element analysis
相關次數: 點閱:90下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 神經系統是動物的協調中樞,其中負責絕緣、傳導及修復受損軸突的髓鞘是非常重要的結構。若周邊神經產生病變會降低偵測危險的能力,甚至導致死亡,例如糖尿病引起的慢性併發症及局部脫髓鞘化。因此了解具髓鞘神經纖維徑向機械性質可能有助於預防永久性神經損害。本研究以微針梳整正常(控制組)與糖尿病(實驗組) SD 大鼠坐骨神經束,取得單一具髓鞘神經纖維,在原子力顯微鏡的自選力-集壓痕模式下,得到其形貌並準確測量神經纖維的彈性力學特性,由接觸力量-壓深曲線,配合 Bilodeau 模型估測視楊氏模數 , 發現控制組為27.57±11.08 kPa,實驗組為 45.02±33.96 kPa 。 此外, 利用穿透式電子顯微鏡的橫截面影像,建立二維有限元素模型,以彈性與超彈性材料描述具髓鞘神經纖維的非線性彈性響應,並分別估測軸突及髓鞘的材料性質。逆向有限元素分析結果顯示實驗組的髓鞘切楊氏模數大於控制組,且髓鞘是徑向負載下主要承受應力的結構。

    The coordination center of animals is the nerve system, in which the myelin is an important structure to provide isolation, saltatory signal transmission and repairing injured nerve. Peripheral neuropathies, such as diabetic polyneuropathy (DPN), are believed to be related to bnormal
    mechanical behavior of myelin and myelinated axon, which may even lead to death due to the decreased ability to detect danger. Understanding the transverse mechanical properties of myelinated nerve fiber may aid preventing permanent nerve injuries in this kind of patients. A micro-needle was employed to tease normal and diabetic Sprague -Dawley rat sciatic nerves into isolated nerve fibers. An AFM with flexible multi-indentation tests was used to obtain the topography and elastic properties of the isolated nerve fibers. With a maximum indentation depth of 9% of height, the force-indentation curve was fitted with Bilodeau model to estimate apparent Young’s modulus, which is 27.57±11.08 kPa in normal group and 45.02±33.96 kPa in diabetic group. A two-dimensional finite element model was built based on the transmission electron microscopy(TEM)images of rehydrated myelinated nerve fiber. The stress -strain relationships of axon and myelin were postulated as a linear elastic model and a hyperelastic model, respectively. The inverse finite element analysis was used to estimate
    the material parameters. The results showed that tangential Young’s modulus of diabetic myelin was higher, and myelin is the main structure to bear radial stress.

    中文摘要 ........................................................................................................ i Abstract .......................................................................................................... ii 誌謝 .............................................................................................................. iii 目錄 .............................................................................................................. iv 圖目錄 ......................................................................................................... vii 表目錄 ........................................................................................................... x 符號表 .......................................................................................................... xi 第一章 緒論................................................................................................ 1 1.1 前言................................................................................................ 1 1.1.1 神經系統簡介 ................................................................. 1 1.1.2 具髓鞘神經纖維 ............................................................. 3 1.1.3 糖尿病神經病變與周邊神經損傷 .................................. 7 1.1.4 有限元素法 ..................................................................... 8 1.2 文獻回顧 ........................................................................................ 9 1.3 研究動機與目的 .......................................................................... 10 1.4 本文架構 ...................................................................................... 11 第二章 實驗材料與方法 .......................................................................... 12 2.1 原子力顯微鏡 .............................................................................. 12 2.1.1 基本原理與硬體架構 .................................................... 12 2.1.2 力量與位置感測系統 .................................................... 16 2.1.3 操作模式、回饋系統與成像模式 ................................ 17 2.1.4 力-集壓痕模式 .............................................................. 18 2.2 原子力顯微鏡樣本製備 .............................................................. 19 2.3 實驗設計與實驗數據處理........................................................... 22 2.3.1 髓鞘神經纖維力學特性量測 ........................................ 23 2.3.2 Bilodeau Model.............................................................. 24 2.3.3 實驗流程 ....................................................................... 25 2.4 具髓鞘神經纖維有限元素模型 ................................................... 27 2.4.1 有限元素軟體簡介........................................................ 27 2.4.2 穿透式電子顯微鏡樣本製備 ........................................ 28 2.4.3 有限元素模型 ............................................................... 30 2.4.4 逆向有限元素分析........................................................ 35 第三章 實驗結果 ...................................................................................... 37 3.1 正常與糖尿病具髓鞘神經纖維多點壓深實驗與統計結果 ........ 38 3.2 具髓鞘神經纖維鋨酸染色與橫切面結果 ................................... 51 3.3 具髓鞘神經纖維有限元素模型結果 ........................................... 52 第四章 討論.............................................................................................. 61 4.1 與現有文獻的比較 ...................................................................... 61 4.1.1 具髓鞘神經纖維實驗方法 ............................................ 62 4.1.2 糖尿病變的影響 ........................................................... 63 4.1.3 細胞實驗結果與本實驗的差異 .................................... 64 4.2 樣本準備過程 .............................................................................. 65 4.3 壓痕試驗過程與誤差探討........................................................... 66 4.4 模型的限制與材料性質探討 ....................................................... 70 第五章 結論與未來工作 .......................................................................... 77 5.1 結論.............................................................................................. 77 5.2 未來工作 ...................................................................................... 78 參考文獻 ..................................................................................................... 79 附錄 ............................................................................................................. 83

    [1] Multiple Sclerosis Research,
    http://multiple-sclerosis-research.blogspot.tw/2011/11/myelin-imaging.
    html.
    [2] 劉亮廷, 臨床神經解剖學. 2003, 臺北縣: 藝軒.
    [3] B. Alberts, J. A., J. Lewis, M. Raff, K. Roberts, and P. Walter,
    Molecular Biology of the Cell. 2007, New York: Garland Science.
    [4] M.R.K. Mofrad and R.D. Kamm, Cytoskeletal mechanics. 2006, New
    York: Cambridge University Press.
    [5] B. Garbaya, A.M. Heapec, F. Sargueila, and C. Cassagnea, "Myelin
    synthesis in the peripheral nervous system". Progress in Neurobiology,
    2000, Vol. 61, No. 3, pp. 267-304.
    [6] J.A. Edgardo and S.S. Steven, "On the molecular architecture of
    myelinated fibers". Histochem Cell Biol, 2000, Vol. 113, No. 1, pp.
    1-18.
    [7] A. Lavdas and R. Matsas, "Schwann Cell Morphology", in New
    Encyclopedia of Neuroscience, L.R. Squire, Editor 2009, Oxford:
    Academic Press, p. 475-484.
    [8] G. Lundborg, Nerve injury and repair regeneration, reconstruction,
    and cortical remodeling 2004, Philadelphia: Elsevier/Churchill
    Livingstone.
    [9] S.S. Scherer and E.J. Arroyo, "Recent progress on the molecular
    organization of myelinated axons". Journal of the Peripheral Nervous
    System, 2002, Vol. 7, No. 1, pp. 1-12.
    [10] H. Wang, B.E. Layton, and A.M. Sastry, "Nerve collagens from
    diabetic and nondiabetic Sprague-Dawley and biobreeding rats: an
    atomic force microscopy study". Diabetes Metab Res Rev, 2003, Vol. 19,
    No. 4, pp. 288-298.
    [11] P.J. Thornalley, "Glycation in diabetic neuropathy: Characteristics,
    consequences, causes, and therapeutic options". International Review
    of Neurobiology, 2002, Vol. 50, No., pp. 37-57.
    [12] E. Tamura and G.J. Parry, "Severe radicular pathology in rats with
    longstanding diabetes". JOURNAL OF THE NEUROLOGICAL
    SCIENCES, 1994 Vol. 127, No. 1, pp. 29-35
    [13] 陳榮健, "類線性黏彈理論於正常與糖尿病變周邊神經組織在位力
    學與類神經細胞力學之研究", 2010, 國立成功大學機械工程研究所
    博士論文.
    [14] 陳煜欣, "有限元素模型與光學同調斷層掃描術於周邊神經組織之
    黏彈性力學之研究", 2012, 國立成功大學機械系統工程研究所碩士
    80
    論文.
    [15] I.N. Sneddon, "The relation between load and penetration in the
    axisymmetric Boussinesq problem for a punch of arbitrary profile". Int.
    J.Eng. Sci, 1965, Vol. 3, No. 1, pp. 47-57.
    [16] G.G.Bilodeau, "Regular Pyramid Punch Problem". Journal of Applied
    Mechanics, 1992, Vol. 59, No. 3, pp. 519-523.
    [17] K.D. Costa and F.C.P. Yin, "Analysis of indentation: Implications for
    measuring mechanical properties with atomic force microscopy".
    ASME, 1999, Vol. 121, No. 5, pp. 462-471.
    [18] K.D. Costa, A.J. Sim, and F.C. Yin, "Non-Hertzian approach to
    analyzing mechanical properties of endothelial cells probed by atomic
    force microscopy". J Biomech Eng, 2006, Vol. 128, No. 2, pp. 176-84.
    [19] 張嘉峰, "應用原子力顯維術於 PC12 類神經細胞之生物力學研究",
    2006, 國立成功大學微機電系統工程研究所碩士論文.
    [20] C.T. Chang, C.C.K. Lin, and M.S. Ju, "Morphology and
    Ultrastructure-Related Local Mechanical Properties of Pc-12 Cells
    Studied by Integrating Atomic Force Microscopy and
    Immunofluorescence Imaging". Journal of Mechanics in Medicine and
    Biology, 2012, Vol. 12, No. 5, pp. 1250032 (21).
    [21] W.C. Huang, J.D. Liao, C.C. Lin, and M.S. Ju, "Depth-sensing
    nano-indentation on a myelinated axon at various stages".
    Nanotechnology, 2011, Vol. 22, No. 27, pp. 275101(8).
    [22] J.P.H. Savolainen and M. Haltia, "Proteins of peripheral nerve myelin
    in diabetic neuropathy". Journal of the Neurological Sciences, 1972,
    Vol. 16, No. 2, pp. 193-199.
    [23] A.P. Mizisin, G.D. Shelton, S. Wagner, C. Rusbridge, and H.C. Powell,
    "Myelin splitting, Schwann cell injury and demyelination in feline
    diabetic neuropathy". Acta Neuropathol., 1998, Vol. 95, No. 2, pp.
    171-174.
    [24] B.E. Layton, A.M. Sastry, H. Wang, K.A. Sullivan, E.L. Feldman, T.E.
    Komorowski, and M.A. Philbert, "Differences between collagen
    morphologies, properties and distribution in diabetic and normal
    biobreeding and Sprague-Dawley rat sciatic nerves". J Biomech, 2004,
    Vol. 37, No. 6, pp. 879-88.
    [25] G.J. Krinke, N. Vidotto, and E. Weber, "Teased-Fiber Technique for
    Peripheral Myelinated Nerves: Methodology and Interpretation".
    Toxicologic Pathology, 2000, Vol. 28, No. 1, pp. 113-121.
    [26] M. Tatke and D. Doyle, "Effect of collagenase on nerve fibre teasing".
    J Clin Pathol 1994, Vol. 47, No. 8, pp. 774-775.
    [27] M. Melling, D. Karimian-Teherani, S. Mostler, and S. Hochmeister,
    "Three-dimensional morphological characterization of optic nerve
    81
    fibers by atomic force microscopy and by scanning electron
    microscopy". Microsc Microanal, 2005, Vol. 11, No. 4, pp. 333-40.
    [28] A. Heredia, C.C. Bui, U. Suter, P. Young, and T.E. Schaffer, "AFM
    combines functional and morphological analysis of peripheral
    myelinated and demyelinated nerve fibers". Neuroimage, 2007, Vol. 37,
    No. 4, pp. 1218-26.
    [29] S.S. Sunderland, Nerves and nerve injuries. 2nd edition ed., 1978, New
    York: Churchill Livingstone.
    [30] E.T. HEDLEY -WHYTE and D.A. KIRSCHNER,
    "MORPHOLOGICAL EVIDENCE OF ALTERATION IN MYELIN
    STRUCTURE WITH MATURATION". Brain Research, 1976, Vol. 113
    No. 3, pp. 487-497
    [31] A.A.F. Sima and K. Sugimoto, "Experimental diabetic neuropathy: an
    update". Diabetologia, 1999, Vol. 42, No. 7, pp. 773-788.
    [32] E.T. Walbeehm, A. Afoke, T. de Wit, F. Holman, S.E. Hovius, and R.A.
    Brown, "Mechanical functioning of peripheral nerves: linkage with the
    "mushrooming" effect". Cell Tissue Res, 2004, Vol. 316, No. 1, pp.
    115-21.
    [33] D.L. Sherman and P.J. Brophy, "Mechanisms of axon ensheathment
    and myelin growth". Nat Rev Neurosci, 2005, Vol. 6, No. 9, pp. 683-90.
    [34] T. OSAWA, X.Y. FENG, M.Y. LIAO, K. MORIGUCHI, and Y.
    NOZAKA, "Collagen Fibrils in the Peripheral Nerves". Connect
    Tissue, 1999, Vol. 31, No. 4, pp. 235-241.
    [35] R.P. Bunge, M.B. Bunge, and C.F. Eldridge, "LINKAGE BETWEEN
    AXONAL ENSHEATHMENT AND BASAL LAMINA PRODUCTION
    BY SCHWANN CELLS". Ann. Rev. Neurosci, 1986, Vol. 9, No., pp.
    305-328.
    [36] S.L. Crick and F.C.P. Yin, "Assessing micromechanical properties of
    cells with atomic force microscopy: importance of the contact point".
    Biomech Model Mechanobiol, 2007, Vol. 6, No. 3, pp. 199-210.
    [37] M.B. Ulkay, A. Aktas, O. Aksoy, D. Haktanir, and H.H. Bozkurt,
    "Comparison of Fixation Methods for Peripheral Nerve Fiber". Kafkas
    Universitesi Veteriner Fakultesi Dergisi, 2013, Vol. 19, No. 1, pp.
    51-56.
    [38] A.F. Bower, "Applied Mechanics of Solids", 2011, Boca Raton: CRC
    Press.
    [39] N.H. Scott, "The Incremental Bulk Modulus, Young's Modulus and
    Poisson's Ratio in Nonlinear Isotropic Elasticity: Physically
    Reasonable Response". Mathematics and Mechanics of Solids, 2007,
    Vol. 12, No. 5, pp. 526-542.
    [40] R.J. Chen, C.C.K. Lin, and M.S. Ju, "Quasi-linear viscoelastic
    properties of PC-12 neuron-like cells measured using atomic force
    82
    microscopy". Journal of the Chinese Institute of Engineers, 2011, Vol.
    34, No. 3, pp. 325-335.
    [41] Y. Fung, Biomechanics: mechanical properties of living tissues. Second
    ed., 1993, New York: Springer-Verlag.

    下載圖示 校內:2018-08-21公開
    校外:2018-08-21公開
    QR CODE