| 研究生: |
張書誠 Chang, Shu-Cheng |
|---|---|
| 論文名稱: |
晶種在磁場作用下對於錫鉛合金之方向性凝固影響 Analysis of Seed Effect with Magnetic Field on the Directional Solidification of Pb-Sn Alloy |
| 指導教授: |
趙隆山
Chao, Long-Sun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 方向性凝固 、錫鉛合金 、晶種 、磁場 、金相 |
| 外文關鍵詞: | directional solidification, Pb-Sn Alloy, seed, magnetic field, microstructure |
| 相關次數: | 點閱:73 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鑄造技術在人類社會已存在數千年的歷史,使人們能夠製造出更堅固的物品;隨著時代的演進,鑄造工藝也越發成熟,至今已大量應用在航太科技上。鑄造之基礎原理為金屬由液態轉變為固態的過程,在凝固過程中,
會因為不同的濃度、溫度等各種條件,產生出不同物理及化學性質,並依照需求廣泛應用於各種領域。
一般的鑄造過程不易控制凝固結構型態,因此多半用於內部結構要求不高的鑄件;而方向性凝固技術可以使得鑄件之內部結構沿特定方向生長,使其達到良好的機械性質。本文以錫鉛合金為實驗材料,透過改變凝固載台下降速率及施加磁場探討對於微結構之影響。在凝固過程中置入一相同成分之多晶晶種,誘發鑄件底部之晶粒發育時沿著晶種提供之枝狀晶優選方向成長,藉此消除底部因高溫度梯度環境而形成的細小等軸晶,並獲得較佳的方向性凝固結構。於實驗完成後探討晶種在不同成長速率與磁場的作用下對於優選方向的控制情形、鑄件晶粒尺寸以及溫度梯度、成長速率等影響。
Casting technology has existed in human society for thousands of years, enabling people to produce stronger materials; with the evolution of the times, casting technology has gradually matured, and has been widely used in aerospace technology. The basic principle of casting is the process of metal transforming from liquid to solid. During the solidification process, due to various conditions such as different concentrations and temperatures, different physical and chemical properties are produced, and they are widely used in various fields according to requirements.
General casting is not easy to control the solidification structure, so it is mostly used for castings with low structural requirements; while the directional solidification technology can make the internal structure of the casting grow in a specific direction to achieve good mechanical properties. In this paper, Pb-Sn alloy is used as the experimental material, and the influence of the microstructure is explored by changing the descending speed of the solidification stage and applying a magnetic field. A polycrystalline seed is placed during the solidification process to induce the crystal grains at the bottom of the casting to grow along the seed crystals when they develop, eliminate the small equiaxed crystals formed at the bottom due to high temperature gradients, and obtain a better directional solidification structure. After the experiment is completed, we will discuss the control of the seed crystal, the crystal grain size, the temperature gradient, and the growth rate under the action of different growth rates and magnetic fields.
[1] W. F. Smith and J. Hashemi, Foundations of materials science and engineering: Mcgraw Publishing, 2006.
[2] F. VerSnyder and R. Guard, “Directional grain structure for high temperature strength”,Trans.ASM, vol. 52, p.485, 1960.
[3] F.VerSnyder, R. Hehemann, and G. M. Ault, “High Temperature Materials”,ed: Wiley-Interscience, New York, 1959.
[4] C. M. Klaren, J. D. Verhoeven and R.Trivedi, “Primary Dendrite Spacing of Lead Dendrite in Pb-Sn and Pb-Au alloys”,Metallurgical Transcatons 11A, vol. 11, pp. 1853-1861,1980.
[5] S.E.Kim, Y.Y.Lee,M.H.oh,H.Inui, M.Yamaguchi, “Directional solidification of TiAl-Si alloys using a polycrystalline seed”, Intermetallics, Volume 8, Issue 4, Pages 399-405,2000.
[6] D.R.Johnson,H. Inui, M.Yamaguchi, “Directional solidification and microstructural control of the TiAl/〖Ti〗_3Al lamellar microstructure in TiAl-Si alloys”,Acta Materialia,Volume 44,Issue 6,Pages 2523-2535,1996.
[7] K.Fujiwara, W.pan, K.Sawada, M.Tokairin, N.Usami, Y.Nose, A.Nomura, T.Shishido, K.Nakajima, “Directional growth method to obtain high quality polycrystalline silicon from its melt”, Journal of Crystal Growth, Volume 292, Issue2, Pages 282-285,2006.
[8] D.Uhlmann,T.SEWARD,and B.Chalmers, “The sffect of magnetic fields on the structure of metal alloy castings”, AIME MET SOC TRANS,vol.236, pp.527-531,1966.
[9] Y. Kishida, K. Takeda, I. Miyoshino, and E. Takeuchi, “Anisotropic effect of magnetohydrodynamics on metal solification”,1990.
[10] S.N.Tewari, R.Shah, H.Song, ”Effect of megnatic field on the microstructure and macrosegregation in directionally solidified Pb-Sn alloys”,Metallurgical and materials transactions A,vol.25, pp.1535-1544,1994.
[11]M.Nakada,K.Mori,S.I.Noshioka,K.Tsutsumi,H.Murakami,Y.Tsuchida, ”Reduction of macrosegregation by applying a DC magnetic field at the final stage of solidification ”, ISIJ international, vol.37, pp.358-364,1997.
[12] 孫延輝, ”穩恆強磁場對Al-4.5% Cu合金定向凝固行為影響的研究,”碩士,上海大學,2005.
[13] 李喜, ”靜磁場下熱電磁效應及其對凝固組織的影響,”中國材料進展,vol.33, 2004.
[14] 林上瑜, ”應用旋轉磁場於熔融金屬攪拌之研究,”碩士,國立清華大學, 2001.
[15] 張家彰, ”半固態電磁攪拌AZ91D鎂合金製成之研究,” 碩士,國立成功大學, 2010.
[16] 王芳春, ”晶種對於錫鉛合金方向性凝固微結構之影響分析,” 碩士,國立成功大學, 2018.
[17] 林益村, ”靜磁場與不同濃度對錫鉛合金之方向性凝固結構之影響分析,”碩士 ,國立成功大學, 2020.
[18] M.Yamaguchi, D.R.Johnson, H.N.Lee, H.Inui, “Directional solidification of TiAl-base alloys”,Intermetallics,Volume 8,Issues 5-6,Pages 511-517, 2000.
[19] T.B.Massalski, H.Okamoto, P.Subramanian,L.Kacprzak,Binary alloy phase diagrams:ASM international, 1990.
[20] P. Jain, Principles of foundry technology: Tata McGraw-Hill Education, 2003.
[21]B.Cantor and L.O’Reilly, Solidification and Casting:Taylor & Francis, 2002.
[22] W.Kurz, D.J.Fisher, “Fundamentals of Solidification”,Tran Tech Publication Ltd,Switzerland, 1998.
[23] D. A. Porter, K. E. Easterling, and M. Sherif, Phase Transformations in Metals and Alloys, Third Edition (Revised Reprint): Taylor & Francis, 2009.
[24] A. S. f. Metals, Liquid metals and solidification: a seminar on liquid metals and solidification held during the thirty-ninth National Metal Congress and Exposition, Chicago, November 2 to 8, 1957: American Society for Metals, 1958.
[25] 謝定華, “網狀晶之穩態成長模式分析,”碩士國立成功大學, 2003.
[26] 屈淑維, “穩恒磁場及直流電場對鋁硅合金凝固過程及組織性能的影響研究,”碩士,中北大學, 2009.
[27] 王嚴, “樹枝晶前沿熱電磁流體動力學效應的研究”,碩士,遼寧工程技術大學, 2009.
[28] D.J.Griffiths, Introduction to Electrodynamics:Pearson, 2013.
[29] I. Kaldre, Y. Fautrelle, J. Etay, A. Bojarevics, and L. Buligins, “Thermoelectric current and magnetic field interaction influence on the structure of directionally solidified Sn-10wt.%Pb alloy”,Journal of Alloys and Compounds, vol. 571, pp. 50-55, 2013.
[30] 李茂與任忠鳴, “縱向磁場對Al-0.85%Cu合金定向凝固介面穩定性和形態的影響”,中國有色金屬學報, vol.21(6), 2004