簡易檢索 / 詳目顯示

研究生: 陳品璋
Chen, Pin-Chang
論文名稱: 準分子雷射直寫技術應用於具微米特徵之無接縫滾筒膜仁
Fabrication of Seamless Roller Mold with Micrometer-Scaled Features Using Excimer Laser Direct Writing Technology
指導教授: 李永春
Lee, Yung-chun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 94
中文關鍵詞: 準分子雷射加工無接縫滾筒模仁滾筒金屬蒸鍍技術滾筒雷射直寫技術
外文關鍵詞: Laser Direct Writing, Roller Imprinting, Seamless Roller Mold, Micro-structure Fabrication
相關次數: 點閱:144下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用準分子雷射加工技術製作無接縫之微米級滾筒模仁,發展出準分子雷射直寫於曲面上定義高複雜度圖型之技術,並透過雷射能量自動量測系統與徑向補償系統增加加工效率與準確性。
    在滾筒之準分子雷射直寫技術實驗中,我們是以KrF準分子雷射(波長248 nm,脈衝時間25 ns)作為光源。先利用本文發展出的滾筒之金屬蒸鍍技術在滾筒曲面均勻的蒸鍍上鉻 (50 nm)與金 (100 nm)。接著將雷射照射於滾筒之金屬層上,瞬間產生的高溫將金屬層移除,進行圖型定義;本文中滾筒雷射加工最小線寬可達20 μm。定義圖型後對玻璃或石英滾筒進行二氧化矽緩衝溶液 (Buffer Oxide Etch, BOE) 濕式蝕刻,此時金屬層為蝕刻阻擋層,蝕刻後即製作出微米級無接縫的滾筒模仁。
    雷射加工採用光罩與滾筒近接的方式進行,滾筒上以1 : 1重現光罩定義的圖型,並應用數位影像處理概念使滾筒雷射直寫系統可進行高複雜度圖型數位化之滾筒加工。此外,本文開發準分子雷射能量分布自動量測系統,使設計光罩更有效率進而提升加工速率。並建立徑向補償系統目的降低滾筒旋轉時產生徑向偏差量至 ±5 μm以內,以增加雷射直寫技術的準確性。期望以本論文開發的具微米特徵之無接縫滾筒可應用於背光模組中元件之製作,並可實現連續式滾輪壓印技術。

    This thesis investigates the fabrication processes of a seamless roller mold with micrometer-scaled features using laser direct writing approach. In the process, a glass roller is first coated with a metal thin film. A high-energy pulsed laser directly machines the metal thin film and thus defines the pattern on the roller’s surface. Wet etching on the patterned roller using the residual metal layer as the etching mask completes the fabrication of seamless glass roller molds with micrometer-scaled features. Digital image processing techniques are incorporated into the laser machining process so that complicated patterns can be successfully transferred. An automatic laser energy distribution system is constructed to increase the fabrication speed by making the best use of laser intensity profile. To deal with the geometrical and dimensional inaccuracy of the roller, an automatic position compensation system is integrated with the laser machining system.
    In this study, a KrF pulsed excimer laser (248 nm wavelength and 25 ns pulse duration) is used as the laser machining source. The thin-film coating on a glass roller is achieved by modifying a commercial electron beam evaporating system. A roller mold laser-patterning platform which consists of the excimer laser, motorized linear translation stage and rotating table, and a multi-axis servo-controller is constricted and controlled by a personal computer. The smallest line width of the laser fabrication this system is about 20 μm. The speed of laser machining can be significantly increased with an automatic laser energy distribution system. The compensation system can significantly reduce the position error during the rotation of the roller down to ±5 μm. Finally, after the wet etching process of a glass roller in Buffer Oxide Etch (BOE) solution, a roller mold with seamless micro-structures is obtained. The proposed roller fabrication method can be applied to roller imprinting which can realize continuous fabrication of micro-structures at high speed and low cost.

    摘要.......................................................I Abstract.................................................III 誌謝.......................................................V 目錄......................................................VI 圖目錄....................................................IX 表目錄...................................................XVI 第一章 緒論...............................................1 1-1 文獻回顧.........................................1 1-2 研究動機.........................................8 1-3 本文架構........................................10 第二章 實驗原理與實驗架構..............................11 2-1 滾輪模仁雷射直寫技術原理.......................11 2-2 滾輪模仁準分子雷射直寫實驗架構.................13 2-2-1 準分子雷射原理.................................13 2-2-2 準分子雷射直寫技術加工系統.....................14 2-3 滾筒模仁加工控制平台之程式開...................19 2-3-1 控制軟體設計與開發.............................19 2-3-2 影像處理概念與應用.............................25 2-3-3 圖型數位化與控制程式整合.......................32 2-4 徑向補償系統...................................34 2-4-1 雷射位移感測計原理.............................34 2-4-2 徑向自動補償系統...............................37 2-4-3 自動化能量分布量測系統.........................42 第三章 實驗製程........................................46 3-1 滾筒模仁準備與前處理...........................46 3-2 滾筒金屬鍍膜...................................48 3-3 滾筒模仁製作...................................51 3-3-1 雷射加工之加工速率與能量相關資訊..............51 3-3-2 光罩設計與製作................................53 3-4 溼式蝕刻.......................................55 第四章 實驗結果與討論..................................57 4-1 金屬光罩製作結果...............................57 4-2 石英滾筒雷射加工實驗結果.......................61 4-2-1 石英滾筒雷射加工結果觀測......................61 4-2-2 石英滾筒模仁雷射加工結果討論..................65 4-3 石英材料與玻璃材料參數測試.....................66 4-3-1 雷射能量密度參數測定..........................66 4-3-2 雷射能量密度參數討論..........................71 4-3-3 溼式蝕刻參數測定..............................74 4-4 玻璃滾筒模仁實驗結果...........................76 4-4-1 玻璃滾筒雷射加工結果觀測......................76 4-4-2 玻璃滾筒模仁雷射加工結果討論..................80 4-4-3 玻璃滾筒模仁蝕刻結果觀測......................81 4-4-4 玻璃滾筒模仁蝕刻結果討論......................84 4-5 圖型數位化之滾筒雷射雕刻........................85 第五章 結論與未來展望..................................88 5-1 結論............................................88 5-2 未來展望........................................90 參考文獻.................................................92

    [1] S. Y. Chou, P. R. Krauss and P. J. Renstrom, “Nanoimprint lithography,” Journal of Vacuum Science and Tecnology B, Vol. 14, pp. 4129-4133 (1996).
    [2] P. R. Krass and S. Y. Chou, “Fabrication of planar quantum magnetic disk structure using electron beam lithography, reactive ion etching, and chemical mechanical polishing,” Journal of Vacuum Science and Tecnology B, Vol. 13(6), pp.2850-2852 (1995).
    [3] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Applied Physics Letters, Vol. 272, pp.85-87 (1996).
    [4] M. Bender, M. Otto, B. Hadam, B. Vratzov, B. Spangemberg, and H. Kurz,“Fabrication of nanostructures using a UV-based imprint technique,”Microelectronic Engineering, Vol. 53(1-4), pp.233-236(2000).
    [5] M. Otto, M. Bender, B. Hadam, B. Spangemberg, and H. Kurz, “Characterization and application of a UV-based imprint technique,” Microelectronic Engineering, Vol. 57(58), pp.361-366 (2001).
    [6] M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Bailey, B.Choi, M. Wedlake, T. Michaelson, S. V. Sreenivason, J. Ekerdt, and C. G. Willson,“Step and flash imprint lithography : a new approach to high-resolution patterning,” Proceedings of the SPIE’s 24th International Symposium on Microlithography : Emerging Lithography Technologies III, Santa Clara, CA, Vol. 3676, Part One, pp.379-389 (1999).
    [7] M. Colburn, A. Grot, M. Amistoso, B. J. Choi, T. Bailey, J. Ekerdt, S. V. Sreenivasan, J. Hollenhorst, C. G. Willson, “Step and flash imprint lithography for sub-100nm patterning,” 2000 SPIE’s 25th International Symposium Microlithography : Emerging Lithography Technologies
    III. Feb. 28 – Mar. 3, 2000 Santa Clara, CA.
    [8] T. Bailey, B. J. Choi, M Colburn, A. Grot, M. Meissl, S. Shaya, J. G. Ekerdt, S. V. Sreenivasan, C. G. Willson, “Step and flash imprint lithography: template surface treatment and defect analysis,” Journal of Vacuum Science and Technology B, Vol. 18(6), pp.3572-3577 (2000).
    [9] T. K. Whidden, D. K. Ferry, M. N. Kozichi, E. Kim, A. Kumar, J. Wilbur, and G. M. Whitesides, “Pattern transfer to silicon by microcontact printing and RIE,” Nanotechnology, Vol. 7, pp. 447-451(1996).
    [10] T. Kawai, K. Ebihara, and A. Yamamoto 精密工學會誌, Vol.72, No.4 (2006).
    [11] H. Ten, A. Giberston, and S. Y. Chou, “Roller nanoimprint lithography,” Jounal of Vacuum science and Technology B, Vol.16(6), pp. 3926-3928 (1998).
    [12] C. Y. Chang, S. Y. Yang, and J. L. Sheh, “A roller embossing process for rapid fabrication of microlens arrays on glass substrates,” Microsystem Technology ,Vol. 12, pp.754–759 (2006).
    [13] D. W. Wang, S. G. Thomas, K. L. Wang, Y. Xia and G. M.
    Whitesides, “Nanometer scale patterning and pattern transfer on amorphous Si, crystalline Si, and SiO2 surfaces using self-assembled monolayers,” Applied Physics Letters, Vol. 70(12), pp.1593-1595
    (1997).
    [14] Y. Xia and G.. M. Whitesides, “Soft lithography,” Angewandte Chemie International Edition, Vol. 37(5), pp.550-575 (1998).
    [15] Y. Xia, D. Qin, and G. M. Whitesides, “Microcontact Printing with a Cylindrical Rolling Stamp: A Practical Step Toward Automatic Manufacturing of Patterns with Submicrometer-Size Features.” Advanced Materials, Vol. 8, No. 12, pp.837-840 (1996).
    [16] T.Y. Zhang and C.Y. Suen, “A fast parallel algorithm for thinning digital pattern,” Communications of the ACM, Vol. 27, No. 3, pp. 236-239 (1984).
    [17] C.J. Hilditch, “Linear Skeletons From Square Cupboards, ” Machine Intelligence 4, Meltzer and Mitchie, eds., University Press, Edinburgh, Scotland, pp.403-420 (1969).
    [18] 林憲陽, 精密位移量測實習手冊, 德霖技術學院機械工程系.
    [19] 雷射位移感測器用戶手冊, 台灣基恩斯股份有限公司, 台灣
    (2006).
    [20] 陳朝光, 陳銘崑, 工程圖學, 高立圖書有限公司, 台灣 (1982)
    [21] Ciprian Iliescu, Bangtao Chen, Francis E.H. Tay, Guolin Xu and Jianmin Miao, “Characterization of deep wet etching of glass,” Proc. of SPIE, Vol. 6037, 60370A (2005).

    下載圖示 校內:2009-08-28公開
    校外:2009-08-28公開
    QR CODE