| 研究生: |
郭士偉 Kuo, Shih-Wei |
|---|---|
| 論文名稱: |
無線通訊平面式天線及CMOS射頻晶片嵌入式天線之設計研究 Research on Wireless Communication Planar Antennas and CMOS RFIC On-Chip Antennas |
| 指導教授: |
莊惠如
Chuang, Huey-Ru |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 平面式天線 、射頻晶片嵌入式天線 、無線通訊 |
| 外文關鍵詞: | Wireless Communication, Planar Antenna, CMOS, RFIC On-Chip Antenna |
| 相關次數: | 點閱:86 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究分為兩大部分,第一部份為應用於WLAN之平面式天線,包括5.8GHz與2.4/5.8GHz雙頻水平極化全向性平面印刷式天線, 以及2.4GHz meander-line平面印刷式天線,同時關於筆記型電腦機體對天線效能的影響也做了相關的量測與研究。第二部份則是利用TSMC 0.18μm製程研製應用於RFID之2.4GHz CMOS射頻晶片嵌入式平面螺旋天線與具平衡器架構之60GHz毫米波CMOS射頻晶片嵌入式偶極子天線。天線之模擬均是使用Ansoft之3-D電磁模擬軟體HFSS。
5.8GHz水平極化全向性天線利用位於基板上下兩層金屬所形成的「Z」字形特殊結構,以同軸電纜從整個天線的中心點饋入,使天線之電流呈現一環型的分佈,進而達到水平極化及全向性場型分佈,而2.4/5.8GHz雙頻水平極化全向性天線亦採用相同之架構。2.4GHz meander-line平面印刷式天線是由單極天線演變而來,為了將尺寸小型化,於是將天線曲折成meander-line之架構,而整體之長度仍接近四分之ㄧ波長。
2.4GHz射頻晶片嵌入式平面螺旋天線是以spiral天線之架構來設計,在場型方面,模擬與量測之場型增益平均值相差約在20dB以上,應是由於FR-4測試板上的金屬及大的接地面之影響所造成,關於非常微小之天線增益量測方面,尚需更進ㄧ步之研究。具平衡器架構之60GHz毫米波射頻晶片嵌入式偶極子天線量測採取on-wafer之量測方式,量測之VSWR在57-64GHz皆小於3 。
另外在附錄中,對電性化小尺寸天線之頻寬限制做了一個概要介紹,同時也對於本論文所設計之2.4GHz晶片嵌入式天線做了相關之驗證與討論。
This thesis presents the research on two sections. One is the WLAN antennas fabricated on FR-4 PCB board, including 5.8GHz and 2.4/5.8GHz dual-band horizontal polarized omni-directional planar printed antennas, and 2.4 GHz meander-line printed antenna. The other is the RFIC CMOS on-chip antennas fabricated by a TSMC standard 0.18μm CMOS process, incluing 2.4 GHz CMOS RFIC on-chip antenna for RFID application and 60 GHz printed dipole antenna with integrated balun. The HFSS 3-D EM simulator is employed for design simulation.
5.8GHz horizontal polarized omni-directional antenna consists of two Z-shaped strips printed on the top and bottom plane of the printed-circuit board (PCB). A coaxial cable is used to connect the central feed point of the top and bottom strips. Due to structure symmetry, the antenna currents establish a square-"loop"-type current distribution, and hence this "loop"-type current distribution will radiate a horizontally polarized field and is expected to have an omnidirectional pattern. The dual-band horizontal polarized omni-directional antenna adopts the same configuration. 2.4GHz meander-line planar printed antenna is originated from monopole antenna. In order to make the antenna size small, we bend the antenna according to mender-line configurations. The total length is approach to 1/4 wavelength. About the planar printed antennas, the measured VSWR is less than 2 and the radiation patternin at H-plane is omni-directional in the application frequency range.
2.4GHz on-chip antenna designs according to spiral antenna configuration. The difference between simulated and measured average antenna gain is above 20dB due to the influence on the metal and ground on the FR-4 test board. About the measurement of very small antenna gain needs more advanced research. 60GHz millimeter-wave CMOS RFIC-on-chip dipole antenna with integrated Balun uses the microstrip via-hole balun to make the feed portion of the dipole antenna have a phase difference of 180 degree. In the appendix, we introduce the bandwidth restriction of electrically small antenna and do the verification and discussion corresponding to 2.4GHz on-chip antenna.
參考文獻
[1] M. Ali, M. Okoniewski, M. A. Stuchly, and S. S. Stuchly, “Dual-frequency strip-sleeve monopole for laptop computers,” IEEE Trans. Antennas Propag., vol. 47, no. 2, pp. 317-323, Feb. 1999.
[2] IEEE Std. 802.11a/D7.0-1999, “Part11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-speed Physical Layer in the 5GHz Band.”
[3] Federal Communications Commission, “Amendment of Parts 2, 15 and 97 of the Commission’s Rules to Permit Use of Radio Frequencies Above 40 GHz for New Radio Applications”, FCC 95-499, ET Docket No. 94-124, RM-8308, Dec. 15, 1995. Available via:ftp//ftp.fcc.gov./pub/Bureaus/ Engineering_Technology/Orders/1995/fcc95499.txt
[4] A. Alford and A. G. Kandoian, “Ultra-high frequency loop antenna, ” Trans. AIEE, vol. 59, pp. 843-848, 1940.
[5] C. Soras, M. Karaboikis, G. Tsachtsiris, and V. Makios, “Analysis and design of an inverted-F antenna printed on a PCMCIA card for the 2.4 GHz ISM band,” IEEE Antenna’s and Propag. Mag., vol. 44, no. 1, pp. 37-44, Feb. 2002.
[6] H.-R. Chuang, C.-C. Lin, L.-C. Kuo, and S.-W. Kuo, “A Horizontally Polarized Omni-Directional Printed Antenna for WLAN Applications,” IEEE Trans. Antenna and Propag., to be published.
[7] H.-R. Chuang et al., “Omni-directional horizontally polarized Alford loop strip antenna, ” US patent 5,767,809, 1998
[8] D. Chizhik, J. Ling, and R. A. Valenzuela, “The Effect of Electric Field Polarization on Indoor Propagation,” in IEEE Int. Universal Personal Communications Conf., vol. 1, Oct. 5-9, 1998, pp. 459-462.
[9] J. T. Bernhard, “Analysis of integrated antenna positions on a laptop computer for mobile data communication,” in IEEE AP-S. Int. Symp. Dig., Montreal, Jul., 1997, pp. 2210-2213.
[10] J. M. Johnson and Y. R. Sammi, “Wideband tab monopole antenna array for wireless adaptive and mobile information systems application,” in IEEE AP-S Int. Symp. Dig., vol. 1, Jul. 21-26, 1996, pp. 718-721.
[11] H.-R. Chuang and L.-C. Kuo, “3-D FDTD Design Analysis of A 2.4 GHz Polarization-Diversity Printed Dipole-Antenna with Integrated Balun and Polarization-Switching Circuit for WLAN and Wireless Communication Applications,” IEEE Trans. Microwave Theory Tech., vol. 51, no. 2, pp. 374-381, Feb. 2003.
[12] C.-C. Lin, S.-W. Kuo, and H.-R. Chuang, “A 2.4-GHz printed meander-line antenna for WLAN applications, “in IEEE AP-S Int. Symp. Dig., vol. 3, Jun. 20-25, 2004, pp. 2767 – 2770.
[13] J. Rashed, C. Tai, “A new class of resonant antennas”, IEEE Trans. Antennas Propag., Vol. 39, No. 9, pp. 1428-1430, 1991.
[14] G. Leon, R.R. Boix, F. Medina, “A comparison among different reduced-size resonant microstrip patch”, Microwave and Optical Tech. Lett., Vol. 29, No. 3, pp. 143-146, 2001.
[15] T. J. Warnagiris and T. J. Minardo, “Performance of a meandered line as electrically small transmitting antenna,” IEEE Trans. Antennas Propag., vol. 46, pp. 1797–1876, Dec. 1998
[16] G. Marrocco, “Gain-optimized self-resonant meander line antennas for RFID applications,” Antennas and Wireless Propag. Lett., Vol. 2, pp. 302-305, 2003.
[17] 電子工程專輯(Electronic Engineering Times-Taiwan), p.3, 2003年11月1日-15日。
[18] http://www.hitachi.com/New/cnews/030902.html
[19] M. Usami, “An Ultra Small RFID Chip : -chip,” in IEEE RFIC Symposium, June 2004.
[20] F-J. Huang, K. O, “A 0.5-um CMOS T/R Switch for 900-MHz Wireless Applications”, IEEE J. of Solid-State Circuits, Vol. 36, No. 3, pp. 486-492, March 2001.
[21] K. Yamamoto, T. Heima, A. Furukawa and ect, “A 2.4-GHz-Band 1.8-V Operation Single-Chip Si-CMOS T/R-MMIC Front-End with a Low Insertion Loss Switch,” IEEE J. of Solid-State Circuits, Vol. 36, No. 8, pp. 1186-1197, August 2001.
[22] H.-R. Chuang and L-C. Kuo, ”3-D FDTD design analysis of a 2.4-GHz polarization -diversity printed dipole antenna with integrated balun and polarization -switching circuit for WLAN and wireless communication applications”, IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 374-381, Feb. 2003.
[23] Q. Chen, V. F. Fusco, M. Zheng and P. S. Hall, “Micromachined Silicon Antennas”, in IEEE Int. Microwave and Millimeter Wave Technology Conf., Aug. 18-20, 1998, pp. 289-292.
[24] Q. Chen, V. F. Fusco, S. H. Raza, M. Zheng, P. S. Hall, and H. S. Gamble, “Silicon Active Slot Loop Antenna with Micromachined Trenches”, in IEE National Antennas and Propagation Conf., No. 461, 1999, pp. 253-255.
[25] V. F. Fusco, Q. Chen, D. Salameh, and T. Brabetz, “Silicon and Soft-Board Millimetre Wave Antennas for Broad-Band Mobile Wireless”, in IEEE Silicon Monolithic Integrated Circuits in RF Systems Conf., Apr. 26-28, 2000, pp. 67-70.
[26] L. J. Chu, “Physical Limitations of Omnidirectional Antennas,” J. Appl. Phys., Vol. 19, pp. 1163-1175, Dec. 1948.
[27] C. A. Balanis, Antenna Theory Analysis and Design, New York: Wiley, 1997.
[28] J. S. McLean, “A Re-Examination of the Fundamental Limits on the Radiation Q of Electrically Small Antennas,” IEEE Trans. Antennas Propag., vol. 44, No. 5, pp. 672-676, May 1996.
[29] R. C. Hansen, “Fundamental Limitations in Antennas,” Proc. IEEE, Vol. 69, No. 2, February 1981.
[30] H. A. Wheeler, “Small Antennas,” IEEE Trans. Antennas Propag., Vol. AP-23, No. 4, pp. 462-469, July 1975.
[31] H. A. Wheeler, “Fundamental Limitations of Small Antennas,” Proc. IRE, pp. 1479-1488, December 1947.
[32] R. F. Harrington, “Effect of Antenna Size on Gain, Bandwidth, and Efficiency,” J. Res. Nat. Bur. Stand.-D Radio Propagation, Vol. 64D, pp. 1-12, January-February 1960.
[33] R. E. Collin and S. Rothschild, “Evaluation of antenna Q,” IEEE Trans. Antennas Propag., vol. AP-12, pp. 21-23, Jan. 1964.
[34] R. L. Fante, “Quality factor of general ideal antennas,” IEEE Trans. Antennas Propag., vol. AP-17, pp. 151-155, Mar. 1969.
[35] G. Goubau, “Multi-element Monopole Antennas,” Proc. Workshop on Electrically Small Antennas ECOM, Ft. Monmouth, N. J., pp. 63-67, May 1976.