簡易檢索 / 詳目顯示

研究生: 林晨興
Lin, Chen-Hsin
論文名稱: 非牛頓奈米流體在交叉橢圓套管中熱交換之數值模擬研究
A numerical study on heat exchange of nano-non-newtonian fluids in a double pipe with staggered oval inner sections
指導教授: 陳朝光
Chen, Chao-Kuang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 75
中文關鍵詞: 計算流體力學交叉橢圓管管殼式熱交換器奈米非牛頓熵增場協同角
外文關鍵詞: CFD, staggered oval tube, tubular heat exchanger, nano-non-Newtonian, entropy generation, synergy angle
相關次數: 點閱:121下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以CFD商業軟體FLUENT進行數值模擬,研究以奈米非牛頓流體作為交叉橢圓管套管內管部分的工作流體時,所發生的熱交換行為。故此,文中探討的面相共三部分,包含:流動特性指數(n)、內管和外管入口初速、奈米體積分率(φ)。接著對下列幾方面進行溫度場與流場的分析,分別是:在選定管道位置的溫度場和流線截面圖、平均紐賽數(Nu)、相對於水的傳熱增強因子(η)、內管道局部紐賽數、內管道局部熵增(S'gen)、選定管道位置的場協同角分布、壓降(ΔP)。計算結果顯示,降低流動特性指數可以有效降低流體因為加入奈米粒子而提高的壓降,同時保留熱傳效果提升的優點。其次,增加內管與外管的入口初速皆有助於熱傳效果的提升,然而提高內管入口初速,相較提高外管入口初速更能強化熱傳效果。最後,奈米體積分率的提高亦能幫助熱傳效果變好,但隨著奈米體積分率上升,流動特性指數能減少的壓降比例會逐漸降低。

    In this study, computational fluid dynamics (CFD) commercial package software have been used on numerical simulation. The heat exchange behavior of nano-non-Newtonian fluid, which flows in the inner tube of a double pipe with staggered oval inner sections is investigated. Therefore, the aspect of investigation can divide into three parts, including flow behavior index (n), inlet velocity of inner or outer tube and volume fraction of nanoparticles (φ). Then, temperature and flow field analysis have been conducted. The results include temperature contours, streamlines and synergy angle contour at selected cross section (L=373 mm), average Nusselt number (Nu), heat transfer enhancement factor (η) versus water, pressure drop (ΔP), local Nusselt number and local entropy generation (S'gen) of inner tube. First, the computation shows that reducing the flow behavior index of working fluid not only can effectively lessening the pressure drop as adding nanoparticles, but also preserve the advantage of improving heat transfer effect. Second, increasing inlet velocity of inner or outer tube both help enhance the effect of heat transfer. Besides, comparing with outer tube, it has more effect on arising inlet velocity of inner tube. Last, increasing nanoparticle volume fraction also help improve the effect of heat transfer. However, the more volume fraction increases, the less percentage of pressure drop reducing by flow behavior index decrease.

    摘要 i Extended abstract ii 致謝 vi 目錄 vii 表目錄 x 圖目錄 xi 符號目錄 xv 第一章 緒論 1 1-1研究動機 1 1-2文獻回顧 2 1-2-1交叉橢圓管文獻回顧 2 1-2-2奈米非牛頓流體文獻回顧 4 1-2-3熱傳分析指標及理論文獻回顧 5 1-3研究目的 6 1-4論文架構 6 第二章 奈米非牛頓流體理論 8 2-1簡介 8 2-2 非牛頓流體(Non-Newtonian fluids) 8 2-2-1 冪律流體(Power-law fluids) 8 2-3 奈米流體(Nanofluids) 10 2-4 奈米非牛頓流體(Nano-Non-newtonian fluids) 11 2-4-1 流體參數 11 2-4-2統御方程式的求法 13 第三章 流場之空間與方程式解析 15 3-1 簡介 15 3-2 交叉橢圓管模型 15 3-3 數值模擬假設條件 17 3-4 統御方程式(governing equation) 18 3-4-1層流模式 18 3-4-2紊流模式 19 3-5 邊界條件(boundary conditions) 23 第四章 數值方法與解析方法 27 4-1 簡介 27 4-2 流動模型─SST k – ω紊流模式 27 4-3 數值求解方法 31 4-3-1 壓力與速度耦合求解─SIMPLE演算法 32 4-3-2 梯度離散─Green-Gauss Node-Based Gradient Evaluation 32 4-3-3 動量、紊流動能k、比耗散率ω方程式離散─QUICK scheme 33 4-3-4壓力插值─二階格式(Second order scheme) 33 4-3-5能量方程離散─二階迎風格式(Second order upwind scheme) 33 4-4 後處理使用公式與指標 34 4-4-1局部紐賽數 34 4-4-2平均紐賽數 35 4-4-3局部熵增 36 4-4-4傳熱增強因子 37 第五章 模擬結果分析與討論 38 5-1 簡介 38 5-2 網格獨立性測試 38 5-3 改變流動特性指數n的影響 39 5-4 改變入口初速的影響 41 5-5 改變奈米體積分率 的影響 43 第六章 結論與未來研究方向 65 6-1 結論 65 6-2 未來研究方向 67 參考文獻 68

    [1] A. E. Bergles, “Application of heat transfer augmentation” Two-Phase Flow Heat Exchangers. pp.343-373. 1988
    [2] 夏再忠.導熱和對流換熱過程的強化與優化。博士論文。北京:清華大學,2001
    [3] W. L. Chen, Z. Guo, C. K. Chen, “A numerical study on the flow over a novel tube for heat-transfer enhancement with a linear eddy-viscosity model.” Int J Heat Mass Transfer, Vol.45. pp.3431-3439. 2004
    [4] W. L. Chen, L. C. Fang, “A numerical study on the flow over a staggered oval tube for heat-transfer enhancement.” J CSME. pp.209-216. 2004
    [5] W. L. Chen, K. L. Wong, K.-D. Wong, A parametric study on the laminar flow in an alternating horizontal or vertical oval cross-section pipe with computational fluid dynamics. Int J Heat Mass Transfer, Vol. 49. pp. 287-296. 2006
    [6] W. L. Chen, A numerical study on the heat-transfer characteristics of an array of alternating horizontal or vertical oval cross-section pipes placed in a cross stream. J Refrig, Vol.30. pp.454-463. 2006
    [7] W. L. Chen, W. C. Dung, “Numerical study on heat transfer characteristics of double tube heat exchangers with alternating horizontal or vertical oval cross section pipes as inner tubes.” Energy Conversion and Management, Vol.49. pp.1574-1583. 2008
    [8] B. V. Dzyubenko, V. N. Stetsyuk, “Principles of heat transfer and hydraulic resistance in twisted tube bundles.” Izvestiya an Sssr: Energetika I Transport(USSR), Vol.27, Issues 4, pp.128-136. 1989
    [9] Z. Y. Guo, “A brief introduction to a novel heat-transfer enhancement heat exchanger.” internal report(2003). Department of EMEMKLEHTEC, Tsinghua University, Beijing, China.
    [10] J. A. Meng, X. G. Liang, Z. J. Chen, and Z. X. Li, “Experimental study on convective heat transfer in alternating elliptical axis tubes”, Experimental Thermal and Fluid Science, Vol.29, No.4, pp.457-465. 2005
    [11] H. Najafi Khaboshan, H. R. Nazif, “The effect of multi-longitudinal vortex generation on turbulent convective heat transfer within alternating elliptical axis tubes with various alternative angles”, Case Study in Thermal Engineering, Vol.12, pp.237-247. 2018
    [12] S. Vaezi, M. S. Karbalaee, P. Hanafizadeh, “Effect of aspect ratio on heat transfer enhancement in alternating oval double pipe heat exchangers”, Applied Thermal Engineering, Vol.125, pp.1164-1172. 2017
    [13] B. Li, B. Feng, Y. L. He, W. Q. Tao, “Experimental study on friction factor and numerical simulation on flow and heat transfer in an alternating elliptical axis tube”, Applied Thermal Engineering, Vol.26, Issues 17, pp.2336-2344. 2006
    [14] A. R. Sajadi, S. Yamani Douzi Sorkhabi, D. Ashtiani, F. Kowsari, “Experimental and numerical study on heat transfer and flow resistance of oil flow in alternating elliptical axis tubes”, International Journal of Heat and Mass Transfer, Vol.77, pp.124-130. 2014
    [15] A. R. Sajadi, F. Kowsary, M. A. Bijarchi, S. Yamani Douzi Sorkhabi, “Experimental and numerical study on heat transfer, flow resistance, and compactness of alternating flattened tubes”, Applied Thermal Engineering, Vol.108, pp.740-750. 2016
    [16] A. Rukruang, N. Chimres, J. Kaew‐On, S. Wongwises, “Experimental and numerical study on heat transfer and flow characteristics in an alternating cross-section flattened tube”, Heat Transfer Asian Research, Vol.48, issue 3, pp.817-834. 2018
    [17] A. Rukruang, R. Nikhom, S. Wongwises, J. Kaew-On, “Experimental study on single phase heat transfer in alternating cross‐section flattened tube” In: Int. Conf. Energy Syst. Environ. Manag. (ESEM 2018), Prince of Songkla University, Songkhla, Thailand, pp.35-44. 2018
    [18] H. Najafi Khaboshan, H. R. Nazif, “Investigation of heat transfer and pressure drop of turbulent flow in tubes with successive alternating wall deformation under constant wall temperature boundary conditions”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol.40, p.42. 2018
    [19] W. Duangthongsuk, S. Wongwises, “Heat transfer enhancement and pressure drop characteristics of TiO2-water nanofluid in a double-tube counter flow heat exchanger”, Int. J. Heat Mass Transfer, Vol.52, issue 7-8, pp.2059-2067. 2009
    [20] G. Huminic, A. Huminic, “Heat transfer characteristics in double tube helical heat exchangers using nanofluids”, Int. J. Heat Mass Transfer, Vol.54, issue 19-20, pp.4280-4287. 2011
    [21] W. Duangthongsuk, A. S. Dalkilic, S. Wongwises, “Convective heat transfer of Al2O3-water nanofluids in a microchannel heat sink”, Curr. Nanosci., Vol.8, issue 3, pp.317-322. 2012
    [22] J. Li, C. Kleinstreuer, “Thermal performance of nanofluid flow in microchannels”, Int. J. Heat Fluid Flow, Vol.29, issue 4, pp.1221-1232. 2008
    [23] J. Li, C. Kleinstreuer, “Microfluidics analysis of nanoparticle mixing in a microchannel system”, Microfluid. Nanofluid., Vol.6, pp.661-668. 2009
    [24] Y. J. Chen, P. Y. Wang, Z. H. Liu, “Application of water-based SiO2 functionalized nanofluid in a loop thermosiphon”, Int. J. Heat Mass Transfer, Vol.56, issue 1, pp.59-68. 2013
    [25] Z. H. Liu, Y. Y. Li, “A new frontier of nanofluid research - application of nanofluids in heat pipes”, Int. J. Heat Mass Transfer, Vol.55, issue 23-24, pp.6786-6797. 2012
    [26] M. Mohammadi, M. Mohammadi, M. B. Shafii, “Experimental investigation of a pulsating heat pipe using ferrofluid (magnetic nanofluid)”, J. Heat Transfer, Vol.134, issue 1, art. no. 014504. 2012
    [27] K. Alizad, K. Vafai, M. Shafahi, “Thermal performance and operational attributes of the startup characteristics of flat-shaped heat pipes using nanofluids”, Int. J. Heat Mass Transfer, Vol.55, issue 1-3, pp.140-155. 2012
    [28] M. Shafahi, V. Bianco, K. Vafai, O. Manca, “An investigation of the thermal performance of cylindrical heat pipes using nanofluids”, Int. J. Heat Mass Transfer, Vol.53, issue 1-3, pp.376-383. 2010
    [29] M. Shafahi, V. Bianco, K. Vafai, O. Manca, “Thermal performance of flat-shaped heat pipes using nanofluids”, Int. J. Heat Mass Transfer, Vol.53, issue 7-8, pp.1438-1445. 2010
    [30] R. Saidur, K. Y. Leong, H. A. Mohammad, “A review on applications and challenges of nanofluids”, Renewable Sustainable Energy Rev., Vol.15, issue 3, pp.1646-1668. 2011
    [31] H. Chang, C. S. Jwo, C. H. Lo, T. T. Tsung, M. J. Kao, H. M. Lin, “Rheology of CuO nanoparticle suspension prepared by ASNSS”, Rev. Adv. Mater. Sci., Vol.10, issue 2, pp.128-132. 2005
    [32] H. U. Kang, S.H. Kim, J. M. Oh, “Estimation of thermal conductivity of nanofluid using experimental effective particle volume”, Exp. Heat Transfer, Vol.19, issue 3, pp.181-191. 2006
    [33] J. F. Zhao, Z. Y. Luo, M. J. Ni, K. F. Cen, “Dependence of nanofluid viscosity on particle size and pH value”, Chin. Phys. Lett., Vol.26, issue 6, p. 066202. 2009
    [34] W. Duangthongsuk, S. Wongwises, “Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids”, Exp. Therm. Fluid Sci., Vol.33, issue 4, pp.706-714. 2009
    [35] E. V. Timofeeva, J. L. Routbort, D. Singh, “Particle shape effects on thermophysical properties of alumina nanofluids”, J. Appl. Phys., Vol.106, issue 1, p. 014304. 2009
    [36] L. Xinfang, Z. Dongsheng, W. Xianju, “Experimental investigation on viscosity of Cu–H2O nanofluids”, J. Wuhan Univ. Technol. Mater. Sci. Ed., Vol.24, pp.48-52. 2009
    [37] W. J. Tseng, F. Tzeng, “Effect of ammonium polyacrylate on dispersion and rheology of aqueous ITO nanoparticle colloids”, Colloids Surf. A, Vol.276, issue 1-3, pp.34-39. 2006
    [38] H. Xie, L. Chen, Q. Wu, “Measurements of the viscosity of suspensions (nanofluids) containing nanosized Al2O3particles”, High Temp.–High Pressures, Vol.37, pp.127-135. 2008
    [39] W. Yu, H. Q. Xie, L. F. Chen, Y. Li, “Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid”, Thermochim. Acta, Vol.491, issue 1-2, pp.92-96. 2009
    [40] A. K. Santra, S. Sen, N. Chakraborty, “Study of heat transfer due to laminar flow of copper–water nanofluid through two isothermally heated parallel plates”, Int. J. Therm. Sci., Vol.48, pp.391-400. 2009
    [41] M. Hojjat, S. G. Etemad, R. Bagheri, “Laminar heat transfer of non-Newtonian nanofluids in a circular tube”, Korean J. Chem. Eng., Vol.27, pp.1391-1396. 2010
    [42] M. Hojjat, S. G. Etemad, R. Bagheri, J. Thibault, “Convective heat transfer of non- Newtonian nanofluids through a uniformly heated circular tube”, Int. J. Therm. Sci., Vol.50, pp.525-531. 2011
    [43] Y. Yang, Z. G. Zhang, E. A. Grulke, W. B. Anderson, G. Wu, “Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow”, Int. J. Heat Mass Transf., Vol.48, pp.1107-1116. 2005
    [44] F. C. Li, J. C. Yang, W. W. Zhou, Y. R. He, Y. M. Huang, B. C. Jiang, “Experimental study on the characteristics of thermal conductivity and shear viscosity of viscoelastic-fluid-based nanofluids containing multi-walled carbon nanotubes”, Thermochim. Acta, Vol.556, pp.47-53. 2013
    [45] S. BaheriIslami, B. Dastvareh, R. Gharraei, “An investigation on the hydrodynamic and heat transfer of nanofluid flow, with non-Newtonian base fluid, in micromixers”, Int. J. Heat Mass Transfer, Vol.78, pp.917-929, 2014
    [46] A. Esmaeilnejad, H. Aminfar, M. S. Neistanak, “Numerical investigation of forced convection heat transfer through microchannels with non-Newtonian nanofluids”, Int. J. Therm. Sci., Vol.75, pp.76-86. 2014
    [47] A. Bejan, “A study of entropy generation in fundamental convective heat transfer.” J. Heat Transf. Vol.101, pp.718-725. 1979
    [48] P. Li, Y. Xie, D. Zhang, G. N. Xie, “Heat transfer enhancement and entropy generation of nanofluids laminar convection in microchannels with flow control devices.”, Entropy, Vol.18, p.134. 2016
    [49] P. K. Singh, T. Anoop, T. Sundararajan, S. K. Das, “Entropy generation due to flow and heat transfer in nanofluids”, Int. J. Heat Mass Transf, Vol.53, pp.4757–4767. 2010
    [50] V. Bianco, O. Manca, S. Nardini, “Entropy generation analysis of turbulent convection flow of Al2O3 nanofluid in a circular tube subjected to constant wall heat flux”, Energy Convers, Manag, Vol.77, pp.306-314. 2014
    [51] A. Mwesigye, Z. J. Huan, “Thermodynamics analysis and optimization of fully developed turbulent forced convection in a circular tube with water-Al2O3 nanofluid”, Int. J. Heat Mass Transf, Vol.89, pp.694-706. 2015
    [52] M. Siavashi, M. Jamali, “Heat transfer and entropy generation analysis of turbulent flow of TiO2-water nanofluid inside annuli with different radius ratios using two-phase mixture model”, Appl. Therm. Eng, Vol.100, pp.1149-1160. 2016
    [53] Y. M. Hung, “Viscous dissipation effect on entropy generation for non-Newtonian fluids in microchannels”, Int. Commun Heat Mass, Vol.35, pp.1125-1129. 2008
    [54] M. Shamshiri, R. Khazaeli, M. Ashrafizaadeh, S. Mortazavi, “Heat transfer and entropy generation analyses associated with mixed electrokinetically induced and pressure-driven power-law microflows”, Energy, Vol.42, pp.157-169. 2012
    [55] M. López de Haro, S. Cuevas, A. Beltrán, “Heat transfer and entropy generation in the parallel plate flow of a power-law fluid with asymmetric convective cooling”, Energy, Vol.66, pp.750-756. 2014
    [56] M. Shojaeian, M. Yildiz, A. Kosar, “Convective heat transfer and second law analysis of non-Newtonian fluid flows with variable thermophysical properties in circular channels”, Int Commun Heat Mass Tran, Vol.60, pp.21-31. 2015
    [57] M. Kiyasatfar, “Convective heat transfer and entropy generation analysis of non-Newtonian power-law fluid flows in parallel-plate and circular microchannels under slip boundary conditions”, Int. J Thermal Science, Vol.128, pp.15-27. 2018
    [58] Y. J. Zhuang, Q. Y. Zhu, “Analysis of entropy generation in combined buoyancy-Marangoni convection of power-law nanofluids in 3D heterogeneous porous media”, Vol.118, pp.686-707. 2018
    [59] O. Mahian, A. Kianifar, C. Kleinstreuer, M. A. Al-Nimr, I. Pop, A. Z. Sahin, S. Wongwises, “ A review of entropy generation in nanofluid flow.” Int. J. Heat Mass Transf, Vol.65, pp.514-532. 2013
    [60] S. U. S. Choi, “Enhancing Thermal Conductivity of fluids with Nanoparticles”,
    Dev. Appl. Non-Newton. Flows FED/MD, Vol.231, pp.99-105. 1995
    [61] H. C. Brinkman, “The viscosity of concentrated suspensions and solutions”, J. Chem. Phys., Vol.20, p.571. 1952
    [62] K. Khanafer, K. Vafai, “A critical synthesis of thermophysical characteristics of nanofluids”, Int. J. Heat Mass Transfer, Vol.54, pp.4410-4428. 2011
    [63] S. Maiga, S. J. Palm, C. T. Nguyen, G. Roy, N. Galanis, “Heat transfer enhanceement by using nanofluids in forced convection flows”, Int. J. Heat Fluid Flow, Vol.26, pp.530-546. 2005
    [64] A. Bejan, “Entropy generation through heat and fluid flow”, Wiley, New York. 1982

    下載圖示 校內:2021-09-01公開
    校外:2021-09-01公開
    QR CODE