| 研究生: |
陳威廷 Chen, Wei-Ting |
|---|---|
| 論文名稱: |
幾何形狀對熱管性能之影響 The influence of geometry effects on the performance of heat pipe |
| 指導教授: |
洪振益
Hung, Chen-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 熱管 、計算流體力學 、氣液相變化 、多孔性材料 、水利直徑 |
| 外文關鍵詞: | heat pipe, CFD, liquid-vapor phase change, porosity material, hydraulic diameter |
| 相關次數: | 點閱:105 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
熱管(Heat Pipe)為近年來常被使用的散熱元件,它的原理為利用相變化的潛熱來快速帶走熱量,熱管在作動時分為加熱端、絕熱端及冷凝端三部份。加熱端使內部液體吸熱達到沸點溫度汽化,氣體往冷凝端擴散,把汽化的氣體凝結為液體,再藉由毛細現象將工作流體吸回加熱端一直循環。本研究係使用計算流體力學(CFD)套裝軟體來模擬熱管的做動情形,包含氣液相變化以及多孔性材料等現象。從商業上成本之考量,探討使用相同材料體積為前提之下,由兩個不同的角度出發。其一是在不同的水利直徑之下去改變熱管的形狀;另一則是增加熱管蒸汽腔體體積在相同的水利直徑之下去改變熱管的形狀。目的則是以基礎理論搭配數值方法建立實用的熱管分析模型,分析模型的完成,可提供電子業在散熱模組設計與評估的參考。
Heat sink components usually use heat pipe that achieved rapid cooling by the liquid-vapor phase change of work fluid in recent years. Heat pipe consists of three parts: (1) evaporator section, (2) adiabatic (transport) section and (3) condenser section. The work fluid achieved the boiling point in evaporator section when it absorbed heat. The resulting vapor pressure drives the vapor through the adiabatic section to the condenser, where the vapor condenses and releasing its latent heat of vaporization. Finally, the work fluid flowed back to evaporator section by the capillary repeatedly. We used CFD Package to simulate the dynamic situation of heat pipe that included liquid-vapor phase and porosity material in this research. Two different models that are based on the same material volume in business costs have been developed: one is at different hydraulic diameter, changing the shape of heat pipe. The other is at same hydraulic diameter, increasing the vapor chamber of heat pipe. The purpose of this study is to construct a practical analysis model for heat pipe. When the model is accomplished, it is helpful to the R&D works of the electronic cooling industries.
[1]杜鳳棋, “兩相沸騰散熱器之研發與展望,"兩岸機電暨產學合作學
術研討會, pp. 471-475,新竹大華技術學院,2008。
[2]楊建裕, “高性能薄板式熱管均熱片研究,"行政院國家科學委員會
, 專題研究計畫,2007。
[3]李豫華, “發光二極體的散熱技術,"行政院國家科學委員會, 科學
發展,435期,18~21頁,2009。
[4]依日光, “熱管技術理論實務,"復漢出版社,2000。
[5]David Reay and Peter Kew, “Heat pipes theory design and
applications,” Butterworth-Heinemann, 5th Edition, 2006.
[6]Amir Faghri, “Heat Pipe Science And Technology,” Taylor & Francis, 1 edition, 1995.
[7]C.A. Busse, “Theory of ultimate heat transfer limit of cylindrical heat pipes,” Int. J. Heat Mass Transf., Vol. 16, pp 169–186, 1973.
[8]R. S. Gaugler, “Heat transfer devices,” U. S. Patent 2,350,348, 1944.
[9]G. M. Grover, “Evaporation-condensation heat transfer device,”US Patent 3229759, 1966.
[10]G. M. Grover, T. P. Cotter, and G. F. Erickson, “Structures of very high thermal conductance,” Journal of Applied Physics, Vol. 35, pp.1990-1991, 1963.
[11]G. M. Grover, J. Bohdansky, C. A. Busse, “The use of a new heat removal system in space thermionic power supplies,” Belgique Luxembourg,1965.
[12]H. M. S. Hussein, “Theoretical and experimental investigation of wickless heat pipes flat plate solar collector with cross flow heat exchanger,” Energy Conversion and Management, Vol.48, pp.1266–1272, 2007.
[13]N. Zhu and K. Vafai, “Analysis of cylindrical heat pipes Incorporating the effects of liquid-vapor coupling and non-Darcian transport---a closed form solution,” Int. journal of heat and mass transfer, Vol.42, pp3405-3418, 1999.
[14]K. C. Leong, C. Y. Liu, and K. H. Sun, “Vapor pressure distribution of a flat plate heat pipe,” Int. Communications in Heat and Mass Transfer,
Vol. 23, No. 6, pp. 789-797, 1996.
[15]T. N. Sreenivasa, S.N. Sridhara and G. Pundarika, “Working fluid inventory in miniature heat pipe,” Int. conference on mechanical
engineering, pp28-30, 2005.
[16]Raffaele Savino, Yoshiyuki Abe, Raimondo Fortezza, “Comparative study of heat pipes with different working fluids under normal gravity and microgravity conditions,” Acta Astronautica, Vol.63, pp24-34, 2008.
[17]M. Shafahi, V. Bianco, K. Vafai and O. Manca, “An investigation of the thermal performance of cylindrical heat pipes using nanofluids,” Int. J.heat mass transfer, Vol.53, pp. 376–383, 2010.
[18]M.N. Chen and A. Faghri, “An analysis of the vapor flow and the heat conduction through the liquid-wick and pipe wall in a heat pipe with single or multiple heat sources,” Int. J. heat and mass transfer, Vol. 33,
No.9, pp. 1945-1955, 1990.
[19]B. R. Babin, G. P. Peterson, D. Wu, “Steady state modeling and testing of a micro heat pipe,” J. Heat Transfer, Vol. 112, pp. 595-601,1990.
[20]J. M. Tournier and M. S. El-Genk, “A heat pipe transient analysis model,” Int. J. heat mass transfer, Vol.37, No.5, pp.753-762, 1994.
[21]R. C. Mehta, T. Jayachandran, “Numerical analysis of transient two phase flow in heat pipe,” Heat and mass transfer, Vol. 31, pp.383-386, 1996.
[22]S. L. Mahmood and M. A. R. Akhanda, “Experimental Investigation of Micro Heat Pipes of Different Cross-Sections Having Same Hydraulic Diameter,” Journal of thermal science, Vol.17, No.3, 2008.
[23]G.S. Hwang, M. Kaviany, W.G. Anderson, J. Zuo, “Modulated wick heat pipe,” International journal of heat and mass transfer, Vol. 50, pp.1420-1434, 2007.
[24]W. G. Anderson, Sanjida Tamanna, D. B. Sarraf, and Peter M. Dussinger, “Heat pipe cooling of concentrating photovoltaic (CPV) systems,” 6th International energy conversion engineering conference, 2008.
[25]Randeep Singh, Aliakbar Akbarzadeh, Chris Dixon, Mastaka Mochizuki, and Roger R. Riehl, “Miniature loop heat pipe with flat evaporator for cooling computer CPU,” IEEE transactions on components and packaging technologies, Vol. 30, pp.42-49, 2007.
[26]Meysam Rahmat, Pascal Hubert, “Two-phase simulations of micro heat pipes,” Computers & Fluids, Vol. 39, pp.451-460, 2010.
[27]A. F. Mills, “Heat transfer,” Pearson, second edition, 2005.
[28]Shoeib Mahjoub, and Ali Mahtabroshan, “Numerical simulation of a conventional heat pipe,” Proceedings of world academy of science, engineering and technology, Vol. 29, pp.117-122, 2008.
[29]A. Nouri-Borujerdi, M. Layeghi, “A numerical analysis of vapor flow in concentric annular heat pipes,” transactions of the ASME, Vol. 126, pp.442-448, 2004.
[30]Sung Jin Kim, Joung Ki Seo, Kyu Hyung Do, “Analytical and experimental investigation on the operational characteristics and the thermal optimization of a miniature heat pipe with a grooved wick structure,” International journal of heat and mass transfer, Vol. 46,
pp.2051-2063, 2003.
[31]S.V. Patankar and D.B. Spalding, “A calculation procedure for heat mass and momentum transfer in three-dimensional parabolic flows,” Int. J. heat mass transfer, Vol. 15, pp. 1787-1972, 1972.
[32]J. S. Wilson, P. E. Raad, “A transient self-adaptive technique for modeling thermal problems with large variations in physical scales,” International journal of heat and mass transfer, Vol. 47, pp. 3707-3720, 2004.
[33]P. E. Raad, P. L. Komarov, and M. G. Burzo, “Numerical
simulation of complex submicron devices,” Electronics cooling, 2009.
[34]FLUENT, “FLUENT 6.3 User's guide,” FLUENT. , 2006.