| 研究生: |
陳翔和 Chen, Hsiang-Ho |
|---|---|
| 論文名稱: |
利用不同焙燒程度棕櫚空果串進行水氣氣化反應之研究 The study of steam gasification with different degrees of torrefied empty fruit bunches |
| 指導教授: |
李約亨
Li, Yueh-Heng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 生質能 、氫氣 、水氣氣化 、焙燒 |
| 外文關鍵詞: | Biomass, Hydrogen, Steam gasification, Torrefaction |
| 相關次數: | 點閱:144 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氣化是一種可以從生質料中獲得合成氣的方法,合成氣內以氫氣和一氧化碳為主要的可燃氣體。其中,以水氣氣化所獲得的合成氣含有最高比例的氫氣。本論文以最大化氫氣/一氧化碳體積比為目標,利用田口法設計實驗。實驗所用生質料為棕櫚空果串,並在氣化前進行焙燒。用以最大化氫氣/一氧化碳比的變因有四:焙燒溫度、水氣流率、氮氣流率和氣化溫度。實驗結果為較低的氣化溫度可加大合成氣中的氫氣/一氧化碳比,且氣化溫度對於氫氣/一氧化碳比的影響大於其餘三個變因。論文中也探討了各變因對於氣化過程中化學反應的影響,也對氣化過程進行經濟分析。
Steam gasification is capable of producing syngas with higher hydrogen molar fraction than air or oxygen gasification. This paper optimizes steam gasification process for palm empty fruit bunch (EFB) using Taguchi method. The gasification experiment is carried out in a small, self-built batch type fixed bed gasifier. H2/CO ratio is selected as quality standards. L9 orthogonal array is used with four parameters: gasification temperature, torrefaction temperature, steam flow rate and carrier gas (nitrogen) flow rate. Lower temperature of gasification is found to increase the H2/CO ratio in syngas considerably, and its effect significantly outweighs other factors. The difference of reaction in gasifier between different levels of control factors is investigated. Economical assessments were also performed.
1. Puigjaner, L., M. Pérez-Fortes, and J. Laínez-Aguirre, Towards a Carbon-Neutral Energy Sector: Opportunities and Challenges of Coordinated Bioenergy Supply Chains-A PSE Approach. Energies, 2015. 8(6): p. 5613-5660.
2. Nunes, L.J.R., J.C.O. Matias, and J.P.S. Catalão, A review on torrefied biomass pellets as a sustainable alternative to coal in power generation. Renewable and Sustainable Energy Reviews, 2014. 40: p. 153-160.
3. Balat, H. and E. Kırtay, Hydrogen from biomass – Present scenario and future prospects. International Journal of Hydrogen Energy, 2010. 35(14): p. 7416-7426.
4. Bergman, P.C.A., et al., Torrefaction for entrained-flow gasification of biomass 2005, ECN.
5. Boardman, R.D., et al., Logistics, Costs, and GHG Impacts of Utility Scale Cofiring with 20% Biomass. 2014. p. Medium: ED; Size: PDFN.
6. Basu, P., Chapter 7 - Gasification Theory, in Biomass Gasification, Pyrolysis and Torrefaction (Second Edition). 2013, Academic Press: Boston. p. 199-248.
7. de Lasa, H., et al., Catalytic Steam Gasification of Biomass: Catalysts, Thermodynamics and Kinetics. Chemical Reviews, 2011. 111(9): p. 5404-5433.
8. Schmidt, M., Oil palm plantation on the slopes of Mt. Cameroon. 2007: Wikipedia.
9. Bongoman, Elaeis guineensis fruits on tree. 2008: Wikipedia.
10. Chang, S.H., An overview of empty fruit bunch from oil palm as feedstock for bio-oil production. Biomass and Bioenergy, 2014. 62: p. 174-181.
11. Piarpuzán, D., J.A. Quintero, and C.A. Cardona, Empty fruit bunches from oil palm as a potential raw material for fuel ethanol production. Biomass and Bioenergy, 2011. 35(3): p. 1130-1137.
12. Parthasarathy, P. and K.S. Narayanan, Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield – A review. Renewable Energy, 2014. 66: p. 570-579.
13. Yang, W., et al., Performance analysis of a fixed-bed biomass gasifier using high-temperature air. Fuel Processing Technology, 2006. 87(3): p. 235-245.
14. Mohammed, M.A.A., et al., Air gasification of empty fruit bunch for hydrogen-rich gas production in a fluidized-bed reactor. Energy Conversion and Management, 2011. 52(2): p. 1555-1561.
15. Sattar, A., et al., Steam gasification of rapeseed, wood, sewage sludge and miscanthus biochars for the production of a hydrogen-rich syngas. Biomass and Bioenergy, 2014. 69: p. 276-286.
16. Yan, F., et al., Hydrogen-rich gas production by steam gasification of char from biomass fast pyrolysis in a fixed-bed reactor: Influence of temperature and steam on hydrogen yield and syngas composition. Bioresource Technology, 2010. 101(14): p. 5633-5637.
17. Kaewpanha, M., et al., Steam co-gasification of brown seaweed and land-based biomass. Fuel Processing Technology, 2014. 120: p. 106-112.
18. Nipattummakul, N., et al., Hydrogen and syngas yield from residual branches of oil palm tree using steam gasification. International Journal of Hydrogen Energy, 2011. 36(6): p. 3835-3843.
19. Wu, C. and P.T. Williams, Hydrogen Production from the Pyrolysis−Gasification of Polypropylene: Influence of Steam Flow Rate, Carrier Gas Flow Rate and Gasification Temperature. Energy & Fuels, 2009. 23(10): p. 5055-5061.
20. Sharma, S. and B.G. Pollet, Support materials for PEMFC and DMFC electrocatalysts—A review. Journal of Power Sources, 2012. 208: p. 96-119.
21. Pan, C., et al., Integration of high temperature PEM fuel cells with a methanol reformer. Journal of Power Sources, 2005. 145(2): p. 392-398.
22. Moon, J., et al., Transient behavior of devolatilization and char reaction during steam gasification of biomass. Bioresource Technology, 2013. 133: p. 429-436.
23. Lettner, F., H. Timmerer, and P. Haselbacher, Guideline for safe and eco-friendly biomass gasification. 2007, Intelligent Energy - Europe.
24. Cassel, B. and K. Menard, Proximate Analysis of Coal and Coke using the STA 8000 Simultaneous Thermal Analyzer. 2012, PerkinElmer.
25. Basu, P., Chapter 4 - Torrefaction, in Biomass Gasification, Pyrolysis and Torrefaction (Second Edition). 2013, Academic Press: Boston. p. 87-145.
26. Gøbel, B., et al., The development of a computer model for a fixed bed gasifier and its use for optimization and control. Bioresource Technology, 2007. 98(10): p. 2043-2052.
27. Chen, C.-J., C.-I. Hung, and W.-H. Chen, Numerical investigation on performance of coal gasification under various injection patterns in an entrained flow gasifier. Applied Energy, 2012. 100: p. 218-228.
28. Inayat, A., et al., Biomass Steam Gasification with In-Situ CO2 Capture for Enriched Hydrogen Gas Production: A Reaction Kinetics Modelling Approach. Energies, 2010. 3(8): p. 1472.
29. Wang, J., et al., Steam gasification of coal char catalyzed by K2CO3 for enhanced production of hydrogen without formation of methane. Fuel, 2009. 88(9): p. 1572-1579.
30. Ferrari, A., et al., Microwave-Specific Effects on the Equilibrium Constants and Thermodynamics of the Steam–Carbon and Related Reactions. The Journal of Physical Chemistry C, 2014. 118(18): p. 9346-9356.
31. Callaghan, C.A., Kinetics and catalysis of the water-gas-shift reaction: A microkinetic and graph theoretic approach. 2006, Naval Undersea Warfare Center.