研究生: |
林冠禎 Lin, Kuan-Chen |
---|---|
論文名稱: |
具摩擦效應之二維平台輪廓控制 Contour Control of a Two-Dimensional Stage System with Friction |
指導教授: |
陳介力
Chen, Chieh-Li |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 169 |
中文關鍵詞: | 輪廓控制 、摩擦力補償 、滑動摩擦 、預滑動摩擦 、輸出回授 |
外文關鍵詞: | contour control, friction compensation, sliding friction regime, presliding friction regime, output feedback |
相關次數: | 點閱:152 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
輪廓控制問題實際上是由平台中各軸同時的運動行為所構成,本身即為一個相當活躍的研究領域。控制的目標在於對各種不同要求的輪廓形狀皆可有效地壓制系統軌跡與輪廓形狀之間的幾何誤差,統稱為輪廓誤差或輪廓精度。若考量實際平台系統的運動行為,即可發現存在於各軸的摩擦力不單單影響軸本身的運動精度表現,同時也會對整體的輪廓精度產生相當複雜的影響。因此本研究不僅只探討輪廓控制問題,同時還將摩擦力行為與其對應的控制補償問題一併納入討論。將輪廓誤差與摩擦力數學模型統整分析之後,包含摩擦力補償的輪廓控制器設計問題就被轉化成兩組完整的數學陳述。為了能讓所提出的設計結果切合實際的應用需求,本研究僅對輸出回授型的控制器設計問題進行討論。針對這兩組不同的數學陳述,透過理論分析架構,結果共提出了五種不同的新設計方法。透過固定追蹤圓形與直線這兩種不同幾何形狀的數值模擬結果,得到了與理論分析的一致性,進而展現了這五種設計在遭遇摩擦力下的輪廓控制問題的可行性。
By the primitive definition, the contour error is a pure geometric quantity, which is not related to time, this makes the contour control design hard to proceed. The use of the contour error model entrusts a dynamic flavor to the contour control problem. Also, based on the varieties in frictional characteristics, the friction behaviour is divided into the sliding friction regime and the presliding friction regime. The contour control problem can be mathematically formulated for both regimes respectively. In this thesis, only output feedback type designs are considered. Five design approaches were proposed based on the different structures of models. Among these five approaches, one for the presliding friction model based design (PFMBD); three for the sliding friction model based designs (SFMBDs); and the other is dedicated for general multi-input multi-output linear systems. The last approach can also be applied to solve the problems of PFMBD and SFMBD. It is concluded that theoretical analysis and numerical results are consistent, which provides a feasible approaches to practical contour control problems.
[1] H. Z. Bin, K. Yamazaki, and M. F. De Vries, “A Microprocessor-Based Control Scheme for the Improvement of Contouring Accuracy,” Annals of the CIRP, Vol.32, 1983, pp. 275-279.
[2] R. Doraiswami, and A. Gulliver, “A Control Strategy for Computer Numerical Control Machine Exhibiting Precision and Rapidity,” ASME Transaction, Journal of Dynamic Systems, Measurement and Control, Vol. 106, 1984, pp.56-62.
[3] W. C. Johnson, K. Shrinivasan, and P. Kulkarni, “Digital Control Algorithms for Electrical Machine Toll Feed Drives,” Proceedings of the 12th North American Manufacturing Research Conference”, 1984, pp. 447-453.
[4] A. Poo, J. Bollinger, and G.. Younkin, “Dynamic Errors in Type I Contouring Systems,” IEEE Transaction on Industry Applications, Vol. 1, 1972, pp. 477-484.
[5] G.. Pritschow, and W. Philipp, “Direct Drives for High-Dynamic Machine Tool Axes,” Annuals of the CIRP, Vol. 37, 1990, pp.389-392.
[6] Y. Koren, and C. C. Lo, “Evaluation of Servo-Controllers for Machine Tools,” Proceedings of the American Control Conference”, 1992, pp. 370-374.
[7] P. Y. Li, “Coordinated Contour Following Control for Machining Operations-A Survey,” Proceedings of the American Control Conference, 1999, pp. 4543-4547.
[8] B. Haak, and M. Tomizuka, “The Effect of Adding Zeros to Feedforward Controllers,” ASME Transactions, Journal of Dynamic Systems, Measurement and Control, Vol. 113, 1991, pp. 6-10.
[9] Y. Koren, and C. C. Lo, “Advanced Controllers for Feed Drives,” Annals of the CIRP Vol. 41, 1992, pp. 689-698.
[10] K. Furuta, K. Kosuge, Y. Shiote, and H. Hatano, “Master-slave Manipulator Based on Virtual Internal Model Following Control Concept,” Proceedings of Robotics and Automation, 1987, pp.567-572.
[11] K. Yoshida, T. Yamada, and T. Yabuta, “Digital Control Stability Improvement of Master-slave Manipulator System,” Proceedings of Intelligent Robots and Systems, 1991, pp. 929-937.
[12] Y. Yokokohji, and T. Yoshikawa, “Bilateral Control of Master-slave Manipulators for Ideal Kinesthetic Coupling-formulation and Experiment,” Proceedings of Robotics and Automation, 1992. pp. 849-858.
[13] K. Yoshida, and T. Yabuta, “A Digital Control Method Applied to Master-slave Manipulator Systems,” Proceedings of Robot and Human Communication, 1992, pp. 282-285.
[14] Y. Koren, “Cross-coupled Biaxial Computer Control for Manufacturing Systems,” ASME Transaction, Journal of Dynamic Systems, Measurement and Control, Vol. 201, 1980, pp.265-272.
[15] Y. Koren and C. C. Lo, “Variable-gain Cross-coupling Controller for Contouring,” Annals of CIRP, Vol. 40, 1991, pp. 371-374.
[16] P. Kulkarni, and K. Srinivasan, “Cross-Coupled Compensators for Contouring Control of Multi-Axial Machine Tools,” Proceedings of 13th North American Manufacturing Research Conference, 1985, pp.558-566.
[17] P. Kulkarni, and K. Srinivasan, “Cross-Coupled Compensators for Multi-Axial Feed Drive Servo Mechanisms,” Proceedings of Japan-USA Symposium of Flexible Automation, 1986, pp. 585-594.
[18] S. S. Yeh, and P. L. Hsu, “Theory and applications of the robust cross-coupled control design,” Proceedings of the American Control Conference, 1997, pp.791-795.
[19] S. S. Yeh, and P. L. Hsu, “Analysis and Design of Integrated Control for Multi-Axis Motion Systems,” IEEE Transactions on Control Systems Technology, Vol. 11, 2003, pp. 375-382.
[20] Y. T. Shih, C. S. Chen, and A. C. Lee, “A Novel Cross-coupling Control Design for Bi-axis Motion,” Journal of Machine Tools and Manufacturing, Vol. 42, 2002, pp. 1539-1548.
[21] M. Tomizuka, “Zero Phase Error Tracking Algorithm for Digital Control,” ASME Transaction, Journal of Dynamic Systems, Measurement and Control, Vol. 109, 1987, pp. 65-68.
[22] T. C. Tsao, and M. Tomizuka, “Adaptive Zero Phase Error Tracking Algorithm for Digital Control,” ASME Transaction, Journal of Dynamic Systems, Measurement and Control,” Vol. 109, 1987, pp. 349-354.
[23] T. C. Tsao, and M. Tomizuka, “Adaptive and Repetitive Control Algorithms for Noncircular Machining,” Proceedings of the American Control Conference, 1988, pp. 115-120.
[24] M. Tomizuka, T. C. Tsao, and K. K. Chew, “Analysis and Synthesis of Discrete-Time Repetitive Controllers,” ASME Transaction, Journal of Dynamic Systems, Measurement and Control,” Vol. 111, 1989, pp.353-358.
[25] K. Ohnishi, “A New Servo Method in Mechatronics,” Transaction on Japan Society of Electronic Engineering, Vol. 107, 1987, pp.83-86.
[26] T. Umeno, and Y. Hori, “Robust Speed Control of DC Servomotors Using Modern Two Degrees-of-freedom Controller Design,” IEEE Transaction on Industrial Electronics., Vol. 38, 1991, pp.363-368.
[27] T. C. Chiu, and M. Tomizuka, “Contouring Control of Machine Tool Feed Drive Systems: A Task Coordinate Frame Approach,” IEEE Transaction on Control Systems Technology. Vol. 9, 2001, pp. 130-139.
[28] S. L. Chen, H. L. Liu, and S. C. Ting, “Contouring Control of Biaxial Systems Based on Polar Coordinates,” IEEE Transaction on Mechatronics, Vol. 7, 2002, pp.329-345.
[29] A. Banerjee, “Influence of Kinetic Friction on the Critical Velocity of Stick-slip Motion,” Wear, Vol. 12, 1968, pp. 107-116.
[30] N. A. Osborne, and D. L. Rittenhouse, “The Modeling of Friction and its Effect on Fine Positioning Control,” AIAA paper Vol. 74, 1974, pp.1-10.
[31] A. Tustin, “The Effects of Backlash and Speed-dependent Friction on the Stability of Close-cycle Control Systems,” IEE Journal, Vol. 94, 1947, pp. 143-151.
[32] D. P. Hess, and A. Soom, “Friction at a Lubricated Line Contact Operating at Oscillating Sliding Velocities,” Journal of Tribology, Vol. 112, 1990, pp. 147-152.
[33] D. Karnopp, “Computer Simulation of Stick-slip Friction in Mechanical Dynamic Systems,” ASME Transaction, Journal of Dynamic Systems, Measurement and Control, Vol. 107, 1985, pp. 100-103.
[34] D. Haessig, and B. Friedland, ”On the Modeling and Simulation of Friction,” ASME Transaction, Journal of Dynamic Systems, Measurement and Control, Vol. 113, 1991, pp. 354-362.
[35] J. Otsuka, “Nanometer Level Positioning Using Three Kinds of Lead Screw,” Nanotechnology, Vol. 3, 1992, pp.29-36.
[36] S. Futami, A. Furutani, and S. Yoshida, “Nanometer Positioning and its Micro-dynamics,” Nanotechnology, Vol. 1, 1990, pp. 31-37.
[37] J.S. Courtney-Pratt, and E. Eisner, “The Effect of a Tangential Force on the Contact of Metallic Bodies,” Proceedings of Royal Society Series A, Vol. 238, 1957, pp.529-550.
[38] H. Ishigaki, I. Kawaguchi, and S. Mizuta, “A Simple Estimation of the Elastic-Plastic Deformation of Contacting Asperities,” Wear, Vol. 54, 1979, pp157-164.
[39] P. Dahl, “A Solid Friction Model,” Aerospace Corporation, El Segundo, C.A., Technical. Rep. TOR-0158(3107-18)-1, 1968.
[40] B. Armstrong-Helouvry, P. Dupont, and C. Canudas de Wit, “A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines with Friction,” Automatica, Vol. 30, 1994, pp.1083-1138.
[41] B. Armstrong-Helouvry, and P. Dupong, ”Friction Modeling for Control,” Proceedings of the American Control Conference, 1993, pp.1905-1915.
[42] C. Canudas de Wit, H. Olsson, K. J. Astrom, and P. Lishinsky, “A New Model for Control of Systems with Friction,” IEEE Transaction on Automatic Control, Vol. 40, 1995, pp.419-425.
[43] J. Sweavers, F. Al-Bender, C. G.. Ganseman, and T. Prajogo, “An Integrated Friction Model Structure with Improved Presliding Behavior for Accurate Friction Compensation,” IEEE Transaction on Automatic Control, Vol. 45, 2000, pp.675-686.
[44] C. Hsieh, and Y. C. Pan, ”Dynamic Behavior and Modeling of the Pre-sliding Static Friction,” Wear, Vol. 242, 2000, pp.1-17.
[45] T. Y. Lin, Y. C. Pan, and C. Hsieh, “Precision-limit Positioning of Direct Drive Systems with the Existence of Friction,” Control Engineering Practice, Vol. 11, 2003, pp. 233-244.
[46] B. S. Heck, S. V. Yallapragada, and M.K. Fan, “Numerical Methods to Design the Reaching Phase of Output Feedback Variable Structure Control,” Automatica, Vol. 31, 1995, pp. 275-279.
[47] C. Edwards, and S. K. Spurgeon, “On the Limitations of Some Variable Structure Output Feedback Controller Designs,” Automatica, Vol. 36, 2000, pp. 743-748.
[48] Y. A. Jiang, T. Hesketh and D. J. Clements, “Output Feedback Sliding-mode Control of Linear Systems,” Proceedings of the American Control Conference, 1997, pp. 2145-2149.
[49] J. P. Cunha, L. Hsu, R. R. Costa and F. Lizarralde, “Output-feedback Model-reference Sliding Mode Control of Uncertain Multivariable Systems,” IEEE Transaction on Automatic Control, Vol. 48, 2003, pp. 2245-2250.
[50] C. Edwards, and S. K. Spurgeon, “Sliding Mode Stabilization of Uncertain Systems Using Only Output Information,” International Journal of Control, Vol. 62, 1995, pp. 1129-1144.
[51] P. Kachroo, and M. Tomizuka, “Chattering Reduction and Error Convergence in the Sliding Mode Control of a Class of Nonlinear Systems,” IEEE Transaction on Automatic Control, Vol. 41, 1996, pp. 1063-1068.
[52] J. C. Lo, and Y. H. Kuo, “Decoupled Fuzzy Sliding-mode Control,” IEEE Transaction on Fuzzy Systems, Vol. 6, 1998, pp. 426-435.
[53] C. L. Chen, and R. L. Xu, “Tracking Control of Robot Manipulator Using Sliding Mode Controller with Performance Robustness,” ASME Transaction, Journal of Dynamic Systems, Measurement and Control, Vol. 121, 1999, pp. 64-70.
[54] Y. Pan, K. Furuta, S. Hatakeyama and S. Suzuki, “Design of Sliding Mode for Chattering-free Variable Structure Control,” IEEE 26th Annual Conference Industrial Electronics Society, 2000, pp. 1117 – 1122.
[55] C. Edwards, A. Akoachere and S. K. Spurgeon, “Sliding-mode Output Feedback Controller Design Using Liner Matrix Inequalities,” IEEE Transaction on Automatic Control, Vol. 46, 2001, pp. 115-119.
[56] J.J. Slotine, and W. Li, “Applied Nonlinear Control,” Prentice Hall, New Jersey, 1991.
[57] C. Edwards, and S. Spurgeon, “Sliding Mode Control: Theory and Applications,” Taylor & Francis, London, 1998.
[58] C.T. Chen, “Linear System Theory and Design,” Oxford University Press, New York, 1999.
[59] V. L. Syrmos, C. T. Abdallah, P. Dorato, and K. Grigoriadis, “Static Output Feedback-A Survey,” Automatica, Vol. 33, 1997, pp. 125-137.
[60] C. Kwan, “Further Results on Variable Output Feedback Controllers,” IEEE Transaction on Automatic Control, Vol. 46, 2001, pp. 1505-1508.