| 研究生: |
黃婕芸 Huang, Chieh-Yun |
|---|---|
| 論文名稱: |
以水熱法擔載鉑觸媒於不同碳材之研究及其在直接甲醇燃料電池之應用 Deposition of hydrothermally synthesized Pt on different carbons for use as direct methanol fuel cell electrodes |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 甲醇氧化 、水熱法 、微波 、Pt/C觸媒 |
| 外文關鍵詞: | Methanol electro-oxidation, hydrothermal method, microwave, Pt/C electrocatalyst |
| 相關次數: | 點閱:79 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
許多擔載白金觸媒於碳載體上的方法已被提出,如含浸法、蒸鍍法、電鍍法、微波輔助多元醇法、超臨界法、微乳化法等,但這些製程通常過程繁瑣或需使用有害物質,亦或是設備昂貴,因此在本研究提出使用設備簡單製程方便之水熱法做為擔載觸媒之方法。本研究以乙二醇做為還原劑,用水熱法將白金觸媒擔載於碳黑、奈米碳纖、奈米碳管與氧化石墨烯四種性質各異之碳載體,並可得到單一粒徑且分佈均勻之Pt/C複合材料,並顯示觸媒粒子易於在載體缺陷位置被析出。合成之Pt/C以X光繞射儀鑑定其結晶相,掃描式電子顯微鏡、穿透式電子顯微鏡觀察其觸媒之粒徑與分佈,由化學電子分析儀鑑定觸媒表面之價態,最後以循環伏安法量測觸媒之活性表面積與甲醇催化效能。結果顯示水熱法以乙二醇做為還原劑之鉑/奈米碳管與鉑/石墨烯複合材料,可得到高於Johnson Matthey商用觸媒之甲醇氧化電流。
this paper, we report the dposition of Pt nanoparticles on different types of carbons including carbon black, carbon nanofiber, carbon nanotube and graphene oxide, by a convenient hydrothermal method. The sizes, size distribution and dispersion of the resulting Pt nanoparticles can be effectively controlled using this method with ethylene glycol, and the results shows Pt nanoparticles precipitating easily at the defects sites of the carbon support. The obtained Pt/C nanocomposites were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffractometry, and X-ray photoelectron spectroscopy. After Pt/C nanocomposites were fabricated, the different properties were examined for the methanol electro-oxidation using cyclic voltammetry. The result shows that the homemade CNT-EG and GO-MWEG catalyst has higher methanol oxidation activity than commercial Pt/C catalyst.
1. Kirubakaran, A., S. Jain, and R.K. Nema, A review on fuel cell technologies and power electronic interface. Renewable & Sustainable Energy Reviews, 13(9): p. 2430-2440. 2009.
2. 毛宗強, 燃料電池. 2005.
3. Kamarudin, S.K., F. Achmad, and W.R.W. Daud, Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices. International Journal of Hydrogen Energy, 34(16): p. 6902-6916. 2009.
4. 盧敏彥, 燃料電池電極觸媒(一)-高分子電解質膜燃料電池陽極觸媒. THE CHINESE CHEM. SOC., TAIPEI, 62(1): p. 139-148. 2004.
5. A. S. Aricò, S. Srinivasan, and V. Antonucci, DMFCs: From Fundamental Aspects to Technology Development. Fuel Cells, 1(2): p. 133-161. 2001.
6. Peng, F., et al., The role of RuO2 in the electrocatalytic oxidation of methanol for direct methanol fuel cell. Catalysis Communications, 10(5): p. 533-537. 2009.
7. Zhou, W.J., et al., Direct ethanol fuel cells based on PtSn anodes: the effect of Sn content on the fuel cell performance. Journal of Power Sources, 140(1): p. 50-58. 2005.
8. Gotz, M. and H. Wendt, Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas. Electrochimica Acta, 43(24): p. 3637-3644. 1998.
9. Tang, S.H., et al., New Carbon Materials as Catalyst Supports in Direct Alcohol Fuel Cells. Chinese Journal of Catalysis, 31(1): p. 12-17. 2010.
10. Liu, H.S., et al., A review of anode catalysis in the direct methanol fuel cell. Journal of Power Sources, 155(2): p. 95-110. 2006.
11. Antolini, E., Carbon supports for low-temperature fuel cell catalysts. Applied Catalysis B-Environmental, 88(1-2): p. 1-24. 2009.
12. Kim, J.H., et al., Carbon-supported and unsupported Pt anodes for direct borohydride liquid fuel cells. Journal of the Electrochemical Society, 151(7): p. A1039-A1043. 2004.
13. Kim, M., et al., The preparation of Pt/C catalysts using various carbon materials for the cathode of PEMFC. Journal of Power Sources, 163(1): p. 93-97. 2006.
14. Anderson, M.L., R.M. Stroud, and D.R. Rolison, Enhancing the activity of fuel-cell reactions by designing three-dimensional nanostructured architectures: Catalyst-modified carbon-silica composite aerogels. Nano Letters, 2(3): p. 235-240. 2002.
15. Rao, V., et al., The influence of carbon support porosity on the activity of PtRu/Sibunit anode catalysts for methanol oxidation. Journal of Power Sources, 145(2): p. 178-187. 2005.
16. Wu, G., Y.S. Chen, and B.Q. Xu, Remarkable support effect of SWNTs in Pt catalyst for methanol electro oxidation. Electrochemistry Communications, 7(12): p. 1237-1243. 2005.
17. Shao, Y.Y., et al., Durability study of Pt/C and Pt/CNTs catalysts under simulated PEM fuel cell conditions. Journal of the Electrochemical Society, 153(6): p. A1093-A1097. 2006.
18. Wang, X., et al., Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell. Journal of Power Sources, 158(1): p. 154-159. 2006.
19. Calvillo, L., et al., Effect of the support properties on the preparation and performance of platinum catalysts supported on carbon nanofibers. Journal of Power Sources, 192(1): p. 144-150. 2009.
20. Bessel, C.A., et al., Graphite nanofibers as an electrode for fuel cell applications. Journal of Physical Chemistry B, 105(6): p. 1115-1118. 2001.
21. Guo, J.S., et al., Carbon nanofibers supported Pt-Ru electrocatalysts for direct methanol fuel cells. Carbon, 44(1): p. 152-157. 2006.
22. Lee, C.L., et al., Preparation of Pt nanoparticles on carbon nanotubes and graphite nanofibers via self-regulated reduction of surfactants and their application as electrochemical catalyst. Electrochemistry Communications, 7(4): p. 453-458.2005.
23. Balan, B.K., S.M. Unni, and S. Kurungot, Carbon Nanofiber with Selectively Decorated Pt Both on Inner and Outer Walls as an Efficient Electrocatalyst for Fuel Cell Applications. Journal of Physical Chemistry C, 113(40): p. 17572-17578. 2009.
24. Matsumoto, T., et al., Reduction of Pt usage in fuel cell electrocatalysts with carbon nanotube electrodes. Chemical Communications, 2004(7): p. 840-841. 2004.
25. Tian, Z.Q., et al., Synthesis and characterization of platinum catalysts on muldwalled carbon nanotubes by intermittent microwave irradiation for fuel cell applications. Journal of Physical Chemistry B, 110(11): p. 5343-5350. 2006.
26. Knupp, S.L., et al., The effect of experimental parameters on the synthesis of carbon nanotube/nanofiber supported platinum by polyol processing techniques. Carbon, 46(10): p. 1276-1284. 2008.
27. Kongkanand, A., et al., Single-wall carbon nanotubes supported platinum nanoparticles with improved electrocatalytic activity for oxygen reduction reaction. Langmuir, 22(5): p. 2392-2396. 2006.
28. Kim, H., A.A. Abdala, and C.W. Macosko, Graphene/Polymer Nanocomposites. Macromolecules, 43(16): p. 6515-6530. 2010.
29. Li, Y.J., et al., Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon, 48(4): p. 1124-1130. 2010.
30. Si, Y.C. and E.T. Samulski, Exfoliated Graphene Separated by Platinum Nanoparticles. Chemistry of Materials, 20(21): p. 6792-6797. 2008.
31. Dong, L.F., et al., Graphene-supported platinum and platinum-ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon, 48(3): p. 781-787. 2010.
32. Seger, B. and P.V. Kamat, Electrocatalytically Active Graphene-Platinum Nanocomposites. Role of 2-D Carbon Support in PEM Fuel Cells. Journal of Physical Chemistry C, 113(19): p. 7990-7995. 2009.
33. Yoo, E., et al., Enhanced Electrocatalytic Activity of Pt Subnanoclusters on Graphene Nanosheet Surface. Nano Letters, 9(6): p. 2255-2259. 2009.
34. Kou, R., et al., Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochemistry Communications, 11(5): p. 954-957. 2009.
35. Shao, Y.Y., et al., Highly durable graphene nanoplatelets supported Pt nanocatalysts for oxygen reduction. Journal of Power Sources, 195(15): p. 4600-4605. 2010.
36. Liu, J., et al., Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochemistry Communications, 11(5): p. 954-957. 2009.
37. Samulski, E.T. and Y.C. Si, Exfoliated Graphene Separated by Platinum Nanoparticles. Chemistry of Materials, 20(21): p. 6792-6797. 2008.
38. Ferrari, A.C. and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B, 61(20): p. 14095-14107. 2000.
39. Ferrari, A.C., Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Communications, 143(1-2): p. 47-57. 2007.
40. Robertson, J., Diamond-like amorphous carbon. Materials Science & Engineering R-Reports, 37(4-6): p. 129-281. 2002.
41. Esmaeilifar, A., et al., Synthesis methods of low-Pt-loading electrocatalysts for proton exchange membrane fuel cell systems. Energy, 35(9): p. 3941-3957. 2010.
42. Lee, K., et al., Progress in the synthesis of carbon nanotube- and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis. Journal of Applied Electrochemistry, 36(5): p. 507-522. 2006.
43. Teranishi, T., et al., Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition. Journal of Physical Chemistry B, 103(19): p. 3818-3827. 1999.
44. Prabhuram, J., et al., Synthesis and characterization of surfactant-stabilized PVC nanocatalysts for fuel cell applications. Journal of Physical Chemistry B, 107(40): p. 11057-11064. 2003.
45. Rao, C.V. and B. Viswanathan, Monodispersed Platinum Nanoparticle Supported Carbon Electrodes for Hydrogen Oxidation and Oxygen Reduction in Proton Exchange Membrane Fuel Cells. Journal of Physical Chemistry C, 114(18): p. 8661-8667. 2010.
46. Sen, F., S. Sen, and G. Gokagac, Efficiency enhancement of methanol/ethanol oxidation reactions on Pt nanoparticles prepared using a new surfactant, 1,1-dimethyl heptanethiol. Physical Chemistry Chemical Physics, 13(4): p. 1676-1684. 2011.
47. Rojas, S., et al., Preparation of carbon supported Pt and PtRu nanoparticles from microemulsion - Electrocatalysts for fuel cell applications. Applied Catalysis a-General, 285(1-2): p. 24-35. 2005.
48. Brimaud, S., et al., Influence of surfactant removal by chemical or thermal methods on structure and electroactivity of Pt/C catalysts prepared by water-in-oil microemulsion. Journal of Electroanalytical Chemistry, 602(2): p. 226-236. 2007.
49. Shimizu, K., et al., Rapid and One-Step Synthesis of Single-Walled Carbon Nanotube-Supported Platinum (Pt/SWNT) Using As-Grown SWNTs through Reduction by Methanol. Energy & Fuels, 23: p. 1662-1667. 2009.
50. Fang, B., et al., Homogeneous Deposition of Platinum Nanoparticles on Carbon Black for Proton Exchange Membrane Fuel Cell. Journal of the American Chemical Society, 131(42): p. 15330-15338. 2009.
51. Chi, C.F., M.C. Yang, and H.S. Weng, A proper amount of carbon nanotubes for improving the performance of Pt-Ru/C catalysts for methanol electro-oxidation. Journal of Power Sources, 193(2): p. 462-469. 2009.
52. Spinace, E.V., et al., Methods of preparation of metal nanoparticles supported on high surface area carbon as electrocatalysts in proton exchange membrane fuel cells. Quimica Nova, 27(4): p. 648-654. 2004.
53. Kim, H., J.N. Park, and W.H. Lee, Preparation of platinum-based electrode catalysts for low temperature fuel cell. Catalysis Today, 87(1-4): p. 237-245. 2003.
54. Li, X.G. and I.M. Hsing, The effect of the Pt deposition method and the support on Pt dispersion on carbon nanotubes. Electrochimica Acta, 51(25): p. 5250-5258. 2006.
55. Bock, C., et al., Size-selected synthesis of PtRu nano-catalysts: Reaction and size control mechanism. Journal of the American Chemical Society, 126(25): p. 8028-8037. 2004.
56. Wang, Y., et al., Metal nanoclusters stabilized with simple ions and solvents - promising building blocks for future catalysts. Topics in Catalysis, 35(1-2): p. 35-41. 2005.
57. Park, K.C., et al., Carbon-supported Pt-Ru nanoparticles prepared in glyoxylate-reduction system promoting precursor-support interaction. Journal of Materials Chemistry, 20(25): p. 5345-5354. 2010.
58. Liu, Z.L., et al., Physical and electrochemical characterizations of microwave-assisted polyol preparation of carbon-supported PtRu nanoparticles. Langmuir, 20(1): p. 181-187. 2004.
59. Li, X., et al., Microwave polyol synthesis of Pt/CNTs catalysts: Effects of pH on particle size and electrocatalytic activity for methanol electrooxidization. Carbon, 43(10): p. 2168-2174. 2005.
60. Li, W.Z., et al., Homogeneous and controllable Pt particles deposited on multi-wall carbon nanotubes as cathode catalyst for direct methanol fuel cells. Carbon, 42(2): p. 436-439. 2004.
61. Bayrakceken, A., et al., Pt-based electrocatalysts for polymer electrolyte membrane fuel cells prepared by supercritical deposition technique. Journal of Power Sources, 179(2): p. 532-540. 2008.
62. Byrappa, K. and T. Adschiri, Hydrothermal technology for nanotechnology. Progress in Crystal Growth and Characterization of Materials, 53(2): p. 117-166. 2007.
63. Wang, M.H., K.D. Woo, and D.K. Kim, Preparation of Pt nanoparticles on carbon nanotubes by hydrothermal method. Energy Conversion and Management, 47(18-19): p. 3235-3240. 2006.
64. Sun, J.Y., et al., Hydrothermal synthesis of Pt-Ru/MWCNTs and its electrocatalytic properties for oxidation of methanol. International Journal of Electrochemical Science, 2(1): p. 64-71. 2007.
65. Chen, L. and G.X. Lu, Hydrothermal synthesis of size-dependent Pt in Pt/MWCNTs nanocomposites for methanol electro-oxidation. Electrochimica Acta, 53(12): p. 4316-4323. 2008.
66. Oh, J.Y., et al., Hydrothermal Synthesis of Pt-Ru-W Anode Catalyst Supported on Multi-Walled Carbon Nanotubes for Methanol Oxidation Fuel Cell. Japanese Journal of Applied Physics, 49(11):115101. 2010.
67. Lim, D.H., et al., A new synthesis of a highly dispersed and CO tolerant PtSn/C electrocatalyst for low-temperature fuel cell; its electrocatalytic activity and long-term durability. Applied Catalysis B-Environmental, 89(3-4): p. 484-493. 2009.
68. Lim, D.H., et al., The effect of sn addition on a Pt/C electrocatalyst synthesized by borohydride reduction and hydrothermal treatment for a low-temperature fuel cell. Electrochemical and Solid State Letters, 10(5): p. B87-B90. 2007.
69. Gerbec, J.A., et al., Microwave-enhanced reaction rates for nanoparticle synthesis. Journal of the American Chemical Society, 127(45): p. 15791-15800. 2005.
70. Pozio, A., et al., Comparison of high surface Pt/C catalysts by cyclic voltammetry. Journal of Power Sources, 105(1): p. 13-19. 2002.
71. Alderucci, V., et al., Xps Study of Surface Oxidation of Carbon-Supported Pt Catalysts. Materials Chemistry and Physics, 41(1): p. 9-14. 1995.