| 研究生: |
廖家慶 Liao, Jia-ching |
|---|---|
| 論文名稱: |
運用自由載子消散效應之矽光波導調變器 Si-Based Optical Waveguide Modulator utilizing the Free Carrier Dispersion Effect |
| 指導教授: |
莊文魁
Chuang, Ricky W. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 擴散技術 、熱擴散 、自由載子消散效應 、矽光波導調變器 |
| 外文關鍵詞: | SOD, SRP, modulation depth, Optical Waveguide Modulator, Free Carrier Dispersion Effect, BMFET |
| 相關次數: | 點閱:68 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對基於矽之光子元件操作在1.3和1.55微米的波長的研究,應用在光纖通訊系統是一個相對新和非常有希望的領域。矽之光積體電路元件是令人感興趣的研究主題。對於矽之光子元件的研究動力是來自於光電整合元件。這種晶片被稱為光電積體電路(OEIC’s),而且它的效能比將光和電元件分開時來的好。在應用層面上來說,OEIC的晶片將允許擁有更多的帶寬、低消耗功率、低雜訊、數據傳輸用最小的串音和高的連結密度。對於整體的微光電電路來說,將高效率的光功能整合在矽材料中將使我們可使用成熟且低成本的的製程技術。為了發展對一個矽之光電系統,室溫下高效率的矽之光源、光波導、調變器和檢測器是必備的。在這篇論文裡,我們主要是研究在1.5微米的通訊波長下的矽之電光調變器上。我們在此研究中提出運用SOD熱擴散方法製作操作在1.5微米波長的矽之光波導調變器。我們考慮我們的製程是低成本和簡易的,而且SOD熱擴散方法是低成本和簡易的技術,對於擴散技術來說。因此,我們便採用SOD熱擴散方式來取代一般常用的離子佈值。我們的P+-P--N+光調變器是改變在矽光波導中所被侷限的光強度,因而達到強度調變的目的。在順向電流5.4毫安培、5微米寬和7毫米的調變器情況底下,大於4%的調變率可被觀察到。透過降低調變器的寬度並且增加摻雜深度和濃度,調變率可以更進一步的增加。我們已經重新設計,製作並且描述一個新穎的矽之BMFET光學調變器的特性。它由一個三電極、雙極模式的場效電晶體形式和一個在矽磊晶層上的矽之脊狀光波導管組合而成的。這元件是設計成將光通道和電通道重疊的形式。經由恰當的控制施加在電極上的偏壓,而使自由載子的電漿在光通道之內或是之外,因而達到光強度調變的目的。這些自由載子會導致矽材料的吸收係數的增加。這些元件是經由SOD熱擴散方式製作而成的。這個元件在IG電流為5毫安培和VDS從0伏特到4.5伏特情況底下可達到大約100%的調變率。
Research on Si-based photonic components working at 1.3 and 1.55 μm wavelengths, exploited in fiber-optic communications, is a relatively new and very promising field. Silicon photonic integrated circuits (PIC’s) are interesting subjects for exploration. The impetus for investigating silicon phonics mainly comes from optoelectronics, i.e., the integration of optics and electronic on the same substrate. The resulting chips are called optoelectronic integrated circuits (OEIC’s), and they will exhibit better performances compared to the optical and electrical circuits when taken separately. In fact, the use of OEIC’s would allow one to obtain high bandwidth, low power consumption, low noise, data transfer with minimal crosstalk and high interconnection density. The implementation of efficient optical functions in Si would allow to user the mature and low cost silicon standard technology for the fabrication of monolithic microphotonics circuits. In order to develop a Si-based optoelectronic system, room temperature efficient Si-based sources, waveguides, modulators, and detectors are needed. In this thesis, we focused the attention on an electrooptic Si-based modulator working at 1.5μm. We hereby present Si-based optical waveguide modulator working at 1.5 μm fabricated by SOD thermal diffusion method. We consider that our process is low cost and simple; SOD thermal diffusion method is low cost and simple process for obtaining dopant region. Therefore, we replace the ion-implantation process with SOD thermal diffusion method.Our P+-P--N+ optical modulator changes intensity confinement of the propagation of a silicon partial waveguide such that and intensity modulation is achieved. Modulation indices of greater than 4% have been observed with a forward-bias current of 5.4 mA, core width of 5μm and a modulation length of 7 mm. By reducing the core width of the modulator and increase dopant depth and concentration, the modulation depth can be further increase.We have redesigned, fabricated and characterized a novel Si-based light modulator that is the BMFET optical modulator. It consists of a three –terminal bipolar mode field effect transistor integrated with a silicon rib waveguide on epitaxial Si wafers. The device was designed to have the electrical and the optical channels coincident. Light modulation is achieved moving a plasma of carriers inside and outside the optical channel by properly biasing the control electrode. The carriers produce an increase of the Si absorption coefficient. The devices have been fabricated using SOD thermal diffusion method. The device exhibits a static modulation depth of around 100% at the chosen driving conditions (Ig=5 mA and VDS from 0 V to 20 V).
[1] R. M. Emmons, B. N. Kurdi, and D. G. Hall, “Buried- oxide silicon-on-insulator structures 1: optical waveguide characteristics,” IEEE J. Quant. Electron., vol. 28, pp. 157-163, 1992.
[2] M. Ghioni, A. Lacaita, G. Ripamonti, and S. Cova,“All-silicon avalanche photodiode sensitive at 1.3μm with picosecond time resolution,” IEEE J. Quant. Electron., vol. 28, pp. 2678-2681, 1992.
[3] A. Sciuto, S. Libertino, S. Coffa, G. Coppola, “A miniaturizable Si-based electro-optical modulator working at 1.5μm,” Appl. Phys. Lett., 2004.
[4] C. Z. Zhao, A. H. Chen, E. K. Liu and G. Z. Li, “Silicon-on-insulator asymmetric optical switch based on total internal reflection,” IEEE Photon. Technol. Lett., vol. 9, pp. 1113-1115, 1997.
[5] A. Liu, R. Jones, L. Liao, D. S. Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 2004.
[6] A. Splett, and K. Petermann,“Low loss single-mode optical waveguide with large cross-section in standard epitaxial silicon,” IEEE Photon. Technol. Lett., vol. 6, no. 3, pp. 425-427, 1994.
[7] R. A. Soref, Proc, “Silicon-Based Optoelectronics,” IEEE vol. 81, pp. 1687, 1993.
[8] Graham T. Reed, and C. E. Jason Png, “Silicon optical modulators,” Materials Today, vol. 8, Issue 1, pp. 40-50, 2005.
[9] G. Cocorullo, F.G. Della Corte, M. Iodice, T. Polichetti, I. Rendina, P.M. Sarro, “Low Loss All-Silicon Single Mode Optical Waveguide with Small Cross- Section,” Fiber and Integrated Optics, vol. 20, pp. 207–219, 2001.
[10] Lorenzo, J. P., and Soref, R. A.,“1.3 µm electro-optic silicon switch ,” Appl. Phys. Lett, vol. 51, pp. 6, 1987.
[11] G.V. Treyz, P. G. May, J. M. Halbout, “Silicon optical modulators at 1.3 μm based on free-carrier absorption,” Electron. Dev. Lett, vol. 12, pp. 276– 278, 1991.
[12] H.C. Huang. S. Yee, R. B. Darling, and C. H. Chen, “A silicon diverging beam modulator fabricated by part of metal-oxide-silicon process modules,” J. Appl. Phys, vol. 72, pp. 791-793, 1992.
[13] A. Cutolo, M. Iodice, P. Spirito, L. Zeni, “Silicon Electro-Optic Modulator Basedon a Three Terminal Device Integrated in a Low-Loss Single-Mode SOI waveguide,” J. Lightwave Technol.,vol.. 15, pp. 505-518, 1997.
[14] Antonella Sciuto, Sebania Libertino, Salvo Coffa, and Giuseppe Coppola, “Miniaturizable Si-based electro-optical modulator working at 1.5 µm,” Appl. Phys. Lett. vol. 86, 201115, 2005.
[15] J. Wilson, J. Hawkes, Optoelectronics. Prentice Hall, 1998.
[16] S. O. Kasap, Optoelectronics and Photonics. Prentice Hall, 2001.
[17] T. R. Graham, P. K. Andrew, Silicon Photonics : An Introduction. England: Wiley, 2004.
[18] R. A. Soref, J. Schmidtchen, K. Petermann,“Large Single-Mode Rib Waveguides in GeSi-Si and Si-on-SiO2,” J. Quantum Electronics, vol. 27, no. 8, pp. 1971-1974, 1991.
[19] S. Pogossian, L. Vescan , A. Vonsovici, “The Single Mode Condition for Semiconductor Rib Waveguides with Large Cross Section,” J. Lightwave Technol., vol. 16, no. 10, pp. 1851-1853, 1998.
[20] A. G. Rickman, G. T. Reed, F. Namavar, “Silicon-on-Insulator Optical Rib Waveguide Loss and Mode Characteristics,” J. Lightwave Technol., vol. 12, no. 10, pp. 1771-1776, 1994.
[21] R. A. Soref, R. R. Bennett,“Electrooptical effects in Silicon,” IEEE Journal of Quanum Electronics, vol. 23, no. 1, pp. 123-129, 1987.
[22] S. A. Clark, B. Culshaw, E. J. C. Dawney, I. E. Day, “Thermo-optic phase modulators in SIMOX material,” Proc. SPIE, 3936, pp. 16-24, 2000.
[23] T. S. Moss, G. J. Burrell, and B. Ellis, Semiconductor Opto-Electronics, London, England: Butterworth & Co., 1973.
[24] N. N. Toan, “Spin-on glass materials and applications in advanced IC technologies,” University Twente, 1999.
[25] H. C. Huang, S. Yee, R. B. Darling, C. H. Chen, “A silicon diverging beam modulator fabricated by part of metal-oxide-silicon process modules,” J. Appl. Phys. 72 (2), pp. 791-793, 1992.
[26] Antonella Sciuto, Sebania Libertino, Salvo Coffa, and Giuseppe Coppola, “ Design, Fabrication, and Testing of an Integrated Si-Based Light Modulator, ” J. Lightwave Technol., vol. 21, no. 1, pp. 228-235, 2003.
[27] Hong Xiao, Introduction to Semiconductor Manufacturing Technology, Pearson Education Taiwan, Taiwan, 2004.
[28] www.icknowledge.com/misc_technology/Sputter.pdf