簡易檢索 / 詳目顯示

研究生: 謝佳芸
Hsieh, Chia-Yun
論文名稱: 以化學氧化聚合法合成8-胺基喹啉與苯胺-2-磺酸之共聚合物奈米粒子
Synthesis of Copolymer Nanoparticles of 8-Aminoquinoline and Aniline-2-sulfonic Acid by Chemical Oxidative Polymerization
指導教授: 陳東煌
Chen, Dong-Hwang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 107
中文關鍵詞: 奈米粒子共聚合物化學氧化聚合
外文關鍵詞: copolymer, nanoparticles, chemical oxidative polymerization
相關次數: 點閱:50下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文在化學氧化聚合反應系統中,以過硫酸胺為起始劑,於30℃下,氧化8-氨基喹啉(AQ)與苯胺-2-磺酸(AS)單體產生自由基以行共聚合反應。反應48小時後,以1M的氫氧化鈉或1M的氨水進行產物收集,探討所得AQAS共聚物之粒徑、光學特性、組成、結構、導電性及溶解性等,並觀察其自組裝行為。由傅立葉轉換紅外線光譜儀(FTIR)和超導核磁共振儀(1H NMR)分析高分子組成與共聚現象,並以元素分析儀(EA)佐證其共聚合之AQ:AS比例約為56:44,證實單體確實以共聚方式聚合並非個別自聚。利用光致發光光譜儀(PL)觀察光學性質,分析兩種高分子不同的發光特性;以紫外光/可見光光譜儀(UV-vis)討論有機溶劑與高分子之間的作用。一般溶劑其介電常數越高者,極化能力越佳,因此高介電常數溶劑會使高分子以緊縮的方式分佈於溶液中,而極性較小的溶劑提供熱力學上較穩定的分子鏈型態,藉此進一步探討高分子鏈上的共軛型態。以熱差分析儀(DTA)與熱重分析儀(TGA)探討單體與共聚物之間的分子結構差異,所製得之高分子明顯具有較優良的耐熱性以及不同於單體之斷裂放熱峰,間接證明共聚高分子的存在。本實驗將磺酸基與喹啉結構放入分子鏈中,目的為利用兩者之立體障礙與氧化還原位置設計出奈米尺寸之功能性高分子顆粒,由穿透式電子顯微鏡(TEM)分析顯示,所合成之AQAS高分子為直徑約20nm之球狀顆粒;原子力顯微鏡(AFM)顯示高分子有二次聚集的現象;以高解析度掃描式電子顯微鏡(SEM)得到高分子在以氫氧化鈉或氨水收集的情況下,其形態上會有不同的差異。由於AQAS具有共軛結構,以氫氧化鈉沉澱所得產品經四點式探針測量得知其導電度為1.896×10-4S/cm。最後,利用不同的有機溶劑測試高分子之加工性,可知所得高分子共聚物具有良好的溶解度。

    An unique strategy for synthesis of narrowly distributed and inherently self-stabilized copolymer nanoparticles by a simple emulsifier-free polymerization from 8-aminoquinoline (AQ) and aniline-2-sulfonic(AS) acid was developed. The oxidative polymerization of AQAS copolymer nanoparticles was carried out with ammonium persulfate as an oxidant in HCl solution at 30℃ for 48 h. The solution was then neutralized by 1M NaOH or 1M NH4OH. The purpose of using two different bases was to verify the effect of salt formation on the property of copolymer. Also, the particle size, optical property, molecular structure, morphology, electrical conductivity, and solubility of the nanoparticles were investigated. From the data of IR and 1H NMR it was revealed that the AQAS copolymer synthesized was not a simple physical blend, but a copolymer with alternating monomers of AQ and AS present in the polymer chain. The ratio of the monomers in the repeat unit on copolymer chain was 56:44 (AQ:AS) which also could prove this copolymerization. Optical properties of the copolymer were studied by using analytical techniques such as PL and UV-Visible spectroscopy. It was observed that the copolymer showed different conformation such as chain and coil in various solvents which may be related to the dielectric constant of the solvent. Chain conformation was observed in solvent with less dielectric constant which revealed that the polymer was thermodynamically more stable in the less polar solvent as it contained very less polar groups and hence existed in the form of extended molecular chain. This theorem was extended to discuss the conjugated structure of copolymer. The polymer exhibited retardation phenomena on thermal degradation at high temperatures. In other words, the copolymer was relatively more thermally stable than its monomers. This data also supported the copolymerization indirectly. From the angle of polymer structure, the sulfonic acid group exhibited electron-withdrawing and the lone pair of electron on the AQ ring nitrogen made copolymer chain display positive charge. Both of stearic hindrances due to the sulfonic acid group in the chain and static rejection prevented the chains from being intertwined with each other in aqueous media and therefore kept the copolymer particles in nano-scale. The particle size was determined to be 20 nm by TEM. A detailed AFM study further revealed the size and shape of the copolymer. In particular, the nanoparticles appeared to be of larger size as compared to what was seen in TEM which may be due to aggregation of smaller particles by physical force to form a secondary particle. The morphologies of the copolymer neutralized by NaOH or NH4OH were investigated with SEM. It showed that the nanospheres of copolymer rearranged to form rod like structure for both cases. It was observed that the copolymer neutralized by NaOH exhibited electrical semi-conductivity with the conductivity found to be 1.896×10-4S/cm. The solubility of the above synthesized copolymer was examined carefully in eleven solvents with different polarity indexes. It could be seen that the solubility of the copolymer was very high in solvent whose polarity lies in between the extremes of the polarity index due to the presence of sulfonic acid group and hydrophobic polymer chain.

    總目錄 頁次 摘要………………………………………………………………… Ⅰ Abstract…………………………………………………………… Ⅱ 致謝………………………………………………………………… Ⅳ 總目錄……………………………………………………………… Ⅵ 表目錄……………………………………………………………… Ⅸ 圖目錄……………………………………………………………… Ⅹ 第一章 緒論……………………………………………………… 1 1.1 前言…………………………………………………………… 1 1.2 奈米科技……………………………………………………… 6 1.3 半導體高分子………………………………………………… 14 1.3.1 半導體高分子的發展…………………………………… 14 1.3.2 半導體高分子之分子構造與導電性…………………… 23 1.3.3 半導體高分子之合成與化學修飾……………………… 27 1.3.4 半導體高分子之聚合反應種類………………………… 29 1.4 研究動機……………………………………………………… 31 第二章 基礎原理…………………………………………………. 33 2.1 引發劑種類…………………………………………………… 33 2.2 鏈鎖聚合的單體……………………………………………… 36 2.3 自由基聚合機制……………………………………………… 37 2.4 化學氧化反應機制…………………………………………… 40 2.5 導電原理……………………………………………………… 42 2.6 影響導電性其他因素………………………………………… 49 2.7 四點式探針原理……………………………………………… 50 2.8 分子自組裝原理……………………………………………… 52 第三章 實驗部份………………………………………………… 55 3.1 實驗流程圖…………………………………………………… 55 3.2 藥品與儀器…………………………………………………… 56 3.2.1 藥品……………………………………………………… 56 3.2.2 儀器……………………………………………………… 57 3.3 AQAS半導體高分子奈米顆粒之製備………………………… 60 3.4 製備各種特性分析樣品之方法……………………………… 61 3.4.1 結構分析………………………………………………… 61 3.4.2 光學性質分析…………………………………………… 61 3.4.3 轉化率鑑定……………………………………………… 62 3.4.4 熱性質分析……………………………………………… 62 3.4.5 型態與粒俓分析………………………………………… 63 3.4.6 導電度分析……………………………………………… 64 3.4.7 溶解度分析……………………………………………… 64 第四章 結果與討論……………………………………………… 65 4.1結構鑑定……………………………………………………… 65 (1) FTIR光譜分析與元素分析………………………………… 65 (2) NMR光譜分析……………………………………………… 68 4.2光學性質分析………………………………………………… 71 (1)PL光譜分析………………………………………………… 71 (2) UV-vis光譜分析…………………………………………… 73 4.3轉化率鑑定…………………………………………………… 76 4.4熱性質分析…………………………………………………… 79 4.5粒徑與型態分析……………………………………………… 81 (1) TEM粒徑分析……………………………………………… 82 (2) AFM表面分析……………………………………………… 85 (3) SEM型態分析……………………………………………… 87 4.6導電度測試…………………………………………………… 92 4.7溶解度測試…………………………………………………… 93 第五章 結論……………………………………………………… 95 References……………………………………………………… 97

    1.T. Piok, S, Gamerith, C. Gadermaier, H. Plank, F. P. Wenzl, S. Patil, R. Montenegro, T. Kietzke, D. Neher, U. Scherf, K. Landfester, and E. J. W. List, “Organic Light-Emitting Devices Fabricated from Semiconducting Nanospheres”, Adv. Mater., 15, 800 (2003)
    2.D. Braun, “Semiconducting Polymer LEDs”, Mater. Today, 5, 32 (2002)
    3.Y. Cao, G. M. Treacy, P. Smith, and A. J. Heeger, “Optical-quality Transparent Conductive Polyaniline Films”, Synth. Met., 57, 3526 (1993)
    4.A. G. MacDiarmid and A. J. Epstein, “The Concept of Secondary Doping as Applied to Polyaniline”, Synth. Met., 65, 103 (1994)
    5.林建中著,高分子化學原理,歐亞,2004
    6.A. D. Peng, D. B. Xiao, Y. Ma, W. S. Yang, and J. N. Yao, “Tunable Emission from Doped 1,3,5-Triphenyl-2-pyrazoline Organic Nanoparticles”, Adv. Mater., 17, 2070 (2005)
    7.K. Landfester, R. Montenegro, U. Scherf, R. Guntner, U. Asawapirom, S. Patil, D. Neher, and T. Kietzke, “Semiconducting Polymer Nanospheres in Aqueous Dispersion Prepared by a Miniemulsion Process”, Adv. Mater., 14, 651 (2002)
    8.U. Asawapirom, F. Bulut, T. Farrell, C. Gadermaier, S. Gamerith, R. Guntner, T. Kietzke, S. Patil, T. Piok, R. Montenegro, B. Stiller, B. Tiersch, K. Landfester, E. J. W. List, D. Neher, C. Sotomayor Torres, and U. Scherf, “Materials for Polymer Electronics Applications Semiconducting Polymer Thin Films and Nanoparticles”, Macromol. Symp., 212, 83 (2004)
    9. S. G. Oh and S. S. Im, “Electroconductive Polymer Nanoparticles Preparation and Characterization of PANI and PEDOT Nanoparticles”, Curr. Appl. Phys., 2, 273 (2002)
    10.Seth R. Marder, “Organic Nonlinear Optical Materials: Where We Have Been and Where We Are Going”, Chem. Commun., 131, 131 (2006)
    11.C. L. Recksiedler, B. A. Deore, and M. S. Freund, “A Novel Layer-by-Layer Approach for the Fabrication of Conducting Polymer/RNA Multilayer Films for Controlled Release”, Langmuir, 22, 2811 (2006)
    12.S. Tian, J. Liu, T. Zhu, and W. Knoll, “Polyaniline/Gold Nanoparticle Multilayer Films: Assembly, Properties, and Biological Applications”, Chem. Mater., 16, 4103(2004)
    13.F. Wang, W. B. Tan, Y. Zhang, X. Fan, and M. Wang, “Luminescent Nanomaterials for Biological Labelling”, Nanotechnology, 17, R1 (2006)
    14.I. H. Campbell and B. K. Crone, “Quantum-Dot/Organic Semiconductor Composites for Radiation Detection”, Adv. Mater., 18, 77 (2006)
    15.X. G. Li, M. R. Huang, Y. Q. Luc, and M. F. Zhu, “Synthesis and Properties of Processible Copolymer Microparticles from Chloroanilines and Aniline”, J. Mater. Chem., 15, 1343 (2005)
    16.A. P. Donya, M. K. Pakter, M. A. Shalimova, and V. N. Lambin, “The Effect of Polar Substituents in Aniline and Pyridine Derivatives on the Inhibition of Steel Corrosion in Acids”, Protection of Metals, 38, 251 (2002)
    17.X. G. Li, H. J. Zhou, and M. R. Huang, “Synthesis and Properties of a Functional Copolymer from N-ethylaniline and Aniline by an Emulsion Polymerization”, Polymer, 46, 1523 (2005)
    18.周宗華著,高分子材料,新文京,2002
    19.S. W. Koch and A. Knorr, “Optics in the Nano-world,” Science, 293, 2217 (2001)
    20. W. C. W. Chan and S. Nie, “Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection,” Science, 281, 201 (1998)
    21.Y. Sun and Y. Xia, “Shape-controlled Synthesis of Gold and Silver Nanoparticles,” Science, 298, 2176 (2002)
    22.C. M. Niemeyer, “Tools for the Biomolecular Engineer,” Science, 297, 62-63 (2002)
    23. R. F. Service, “Assembling Nanocircuits from the Bottom Up,” Science, 293, 782 (2001).
    24.J. Cumings and A. Zettl, “Low-friction Nanoscale Linear Bearing Realized from Multiwall Carbon Nanotubes,” Science, 289, 602 (2000)
    25. S. J. Park, T. A. Taton, and C. A. Mirkin, “Array-based Electrical Detection of DNA with Nanoparticle Probes,” Science, 295, 1503 (2002)
    26.P. Englebienne and A. V. Hoonacker, “Gold–conductive Polymer Nanoparticles: A Hybrid Material with Enhanced Photonic Reactivity to Environmental Stimuli”, J. Colloid Interface Sci., 292, 445 (2005)
    27.S. T. Selvan, J. P. Spatz, H. A. Klok, and M. Möller, “Gold-Polypyrrole Core-Shell Particles in Diblock Copolymer Micelles”, Adv. Mater., 10, 132 (1998)
    28.A. N. Krasnov, “High-contrast Organic Light-emitting Diodes on Flexible Substrates,” Appl. Phys. Lett., 80, 3853 (2002)
    29.X. L. Chen and S. A. Jenekhea, “Semiconducting Polymer Quantum Wires”, Appl. Phys. Lett., 70, 487 (1997)
    30.N. Kumar and K. S. Narayan, “Polarization-dependent Discharge in Fibers of a Semiconducting Ladder-type Polymer,” Appl. Phys. Lett., 78, 1556 (2001)
    31.馬振基著,奈米材料科技-原理與應用,全華,2004
    32.L. J. Zhang, H. Peng, C. F. Hsu, P. A. Kilmartin, and J. S. Travas, “Self-assembled Polyaniline Nanotubes Grown from a Polymeric Acid Solution”, Nanotechnology,18, 115607 (2007)
    33.X. G. Li, Y. M. Hua, and M. R. Huang, “Simple Synthesis of Aminoquinoline/Ethylaniline Copolymer Semiconducting Nanoparticles”, Chem. Eur. J., 11, 4247 (2005)
    34.X. G. Li, M. R. Huang, and Y. M. Hua, “Facile Synthaesis of Processible Aminoquinoline/Phenetidine Copolymers and Their Pure Semiconducting Nanoparticles”, Macromolecules, 38, 4211 (2005)
    35.X. G. Li, Q. F. Lu, and M. R. Huang, “Facile Synthesis and Optimization of Conductive Copolymer Nanoparticles and Nanocomposite Films from Aniline with Sulfodiphenylamine”, Chem. Eur. J., 12, 1349 (2006)
    36.J. Zhang, N. Coombs, E. Kumacheva, Y. Lin, and E. H. Sargent, “A New Approach to Hybrid Polymer-Metal and Polymer-Semiconductor Particles”, Adv. Mater., 14, 1756 (2002)
    37.Y. Ohara, T. Nakabayashi, K. Iwasaki, T. Torimoto, B. Ohtani, T. Hiratani, K. Konishi, and N. Ohta, “Electric-Field-Induced Changes in Absorption and Emission Spectra of CdS Nanoparticles Doped in a Polymer Film”, J. Phys. Chem. B, 110, 20927 (2006)
    38.D. M. Sarno, J. J. Martin, S. M. Hira, C. J. Timpson, J. P. Gaffney, and W. E. Jones, Jr, “Enhanced Conductivity of Thin Film Polyaniline by Self-Assembled Transition Metal Complexes”, Langmuir, 23, 879 (2007)
    39.A. J. Heeger, “Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials (Nobel Lecture)”, Chem. Int. Ed., 40, 2591 (2001)
    40.R. R. Chance, L. W. Shacklette, G. G. Miller, D. M. Ivory, J. M. Sowa, R. L. Elsenbaumer, and R. H. Baughman, ”Highly Conducting Charge-transfer Complexes of a Processible Polymer: Poly(p-phenylene sulphide)”, J. Chem. Soc. Chem. Commun., 8, 348 (1980)
    41.P. Pfluger and O. B. Street, ”Chemical, Electronic, and Structural Properties of Conducting Heterocyclic Polymers: A View by XPS” J. Chem. Phys., 80, 544 (1984).
    42.A. F. Diaz, K. K. Kanazawa, and G. P. Gardini, ”Electrochemical Polymerization of Pyrrole” J. Chem. Soc. Chem. Commun., 635 (1979).
    43. E. M. Genies, G. Bidan, and A. F. Diaz, “Spectroelectrochemical Study of Polypyrrole Films” J. Electroanal. Chem., 149, 101 (1983)
    44. G. Tourillon and F. Garnier, “New Electrochemically Generated Organic Conducting Polymers” J. Electroanal Chem., 135, 173 (1982)
    45.F. Garnier, G. Tourillon, M. Gazard, and J.C. Dubois, “Organic Conducting Polymers Derived from Substituted Thiophenes as Electrochromic Material”, J. Electroanal Chem., 148, 299 (1983)
    46.J. P. Pouget, M. E. Jozefowicz, A. J. Epstein, X. Tang, and A. G. MacDiarmid, “X-ray Structure of Polyaniline”, Macromolecules, 24, 779 (1991)
    47.X. Huang and J. Li, “From Single to Multiple Atomic Layers:A Unique Approach to the Systematic Tuning of Structures and Properties of Inorganic-Organic Hybrid Nanostructured Semiconductors”, J. Am. Chem. Soc., 129, 3157 (2007)
    48.A. Jayashree, P. Srinivasan, and D.N. Sathyanarayana, “Conducting Polyaniline Blends and Composites”, Prog. Polym. Sci., 23, 993 (1998)
    49.X. G. Li, R. Liu and M. R. Huang, “Facile Synthesis and Highly Reactive Silver Ion Adsorption of Novel Microparticles of Sulfodiphenylamine and Diaminonaphthalene Copolymers”, Chem. Mater., 17, 5411(2005)
    50.C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Plastic Solar Cells”, Adv. Funct. Mater., 11, 15(2001)
    51.T. Kietzke, D. Neher, M. Kumke, R. Montenegro, K. Landfester, and U. Scherf, “A Nanoparticle Approach to Control the Phase Separation in Polyfluorene Photovoltaic Devices”, Macromolecules, 37, 4882(2004)
    52.N. Satoh, T. Nakashima, and K. Yamamoto, “Metal-Assmbling Dendrimers with a Triarylamine Core and Their Application to a Dye-Sensitized Solar Cell”, J. Am. Chem. Soc., 127, 13030 (2005)
    53.R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Brédas, M. Lögdlund, and W. R. Salaneck, “Electroluminescence in Conjugated Polymers”, Nature, 397, 121 (1999)
    54.A. Z. Sadek, C. O. Baker, D. A. Powell, W. Wlodarski, R. B. Kaner, and K. Kalantar-zadeh, “Polyaniline Nanofiber Based Surface Acoustic Wave Gas Sensors—Effect of Nanofiber Diameter on H2 Response”, IEEE Sens. J., 7, 213 (2007)
    55.J. Yue, Z. H. Wang, K. R. Cromack, A. J. Epstein, and A. G. MacDiarmid, “Effect of Sulfonic Acid Group on Polyaniline Backbone”, J. Am. Chem. SOC., 113, 2665 (1991)
    56.X. L. Wei and A. J. Epstein, “Synthesis of Hight Sulfonated Polyaniline”, Synthetic Metals, 74, 123 (1995)
    57.X. L. Wei, M. Fahlman, and A. J. Epstein, “XPS Study of Highly Sulfonated Polyaniline”, Macromolecules, 32, 3114 (1999)
    58.X. G. Li, M. R. Huang, and W. Duan, “Novel Multifunctional Polymers from Aromatic Diamines by Oxidative Polymerizations”, Chem. Rev., 102, 2925 (2002)
    59.F. R. Diaz, M. A. D. Valle, L. H. Tagle, and J. L. Torres, “Synthesis, Characterization and Electrical Properties of Poly(dibromoaniline-co-aniline)s”, J. Mater. Sci., 38, 2455 (2003)
    60.U. S. Waware and S. S. Umare, “Chemical Synthesis, Spectral Characterization and Electrical Properties of Poly(aniline-co-m-chloroaniline)”, React. Funct. Polym., 65, 343 (2005)
    61.X. G. Li, M. R. Huang, Y. M. Hua, M. F. Zhu, and Q. Chen, “Facile Synthesis of Oxidative Copolymers from Aminoquinoline and Anisidine”, Polymer, 45, 4693 (2004)
    62.X. G. Li, M. R. Huang, and R. Liu, “Facile Synthesis of Semi-conducting Particles of Oxidative Melamine/Toluidine Copolymers with Solvatochromism”, React. Funct. Polym., 62 285 (2005)
    63.X. G. Li, R. R. Zhang, and M. R. Huang, “Synthesis of Electroconducting Narrowly Distributed Nanoparticles and Nanocomposite Films of Orthanilic Acid/Aniline Copolymers”, J. Comb. Chem., 8, 174 (2006)
    64.X. G. Li, Z. Q. Dong, M. R. Huang, H. L. Shao, and X. C. Hu, “Oxidative Copolymerization between Toluidine and Vinyl Acetate”, J. Appl. Polym. Sci., 100, 3562 (2006)
    65.A Moliton1 and R. C Hiorns, “Review of Electronic and Optical Properties of Semiconducting π-Conjugated Polymers: Applications in Optoelectronics”, Polym Int., 53, 1397 (2004)
    66.林建中著,高分子材料性質與應用,高立,1998
    67.馬光輝/蘇志國著,新型高分子材料,曉園,2006
    68.D. K. Moon, J. Y. Yun, K. Osakada, T. Kambara, and T. Yamamoto, “Synthesis of Random Copolymers of Pyrrole and Aniline by Oxidative Polymerization”, Mol. Cryst. Liq. Cryst., 464, 177 (2007)
    69.X.-G. Li, W. Duan, M. R. Huang, Y. L. Yang, “Preparation and Characterization of Soluble Terpolymers from m-phenylenediamine, o-anisidine, and 2,3-xylidine”, J. Polym. Sci. Part A: Polym. Chem., 39, 3989(2001)
    70.S. Jin, X. Liu, W. Zhang, Y. Lu, and G. Xue, “Electrochemical Copolymerization of Pyrrole and Styrene”, Macromolecules, 33, 4805(2000)
    71.M. G. Han and S. S. Im, “Electrical and Structural Analysis of Conductive Polyaniline/Polyimide Blends”, J. Appl. Polym. Sci., 71, 2169 (1999)
    72.S. Förster and T. Plantenberg, “From Self-Organizing Polymers to Nanohybrid and Biomaterials”, Angew. Chem. Int. Ed., 41, 688 (2002)
    73.M. Lee, B. K. Cho, and W. C. Zin, “Supramolecular Structures from Rod-Coil Block Copolymers”, Chem. Rev., 3869 (2001)
    74.H. A. Klok and S. Lecommandoux, “Supramolecular Materials via Block Copolymer Self-Assembly”, Adv. Mater., 13, 1217 (2001)
    75.Y. Wei, K. F. Hsueh, and G. W. Jang, “A Study of Leucoemeraldine and the Effect of Redox Reactions on the Molecular Weight of Chemically Prepared Polyaniline”, Macromolecules, 27, 518 (1994)
    76.S. Ghosh and V. Kalpagam, “Solvent Effect on the Electronic Absorption Spectra of Polyaniline”, Synth. Met., 33, 11 (1989)
    77.J. M. Ginder and A. J. Epstein, “Role of Ring Torsion Angle in Polyaniline: Electronic Structure and Defect States”, Phys. Rev. B, 41, 10674 (1990)
    78.W. S. Huang, B. D. Humphrey, and A. G. MacDiarmid, “Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes”, J. Chem. Soc., Faraday Trans. 1, 82, 2385 (1986)
    79.C. G. Wu and T. Bein, “Conducting Polyaniline Filaments in a Mesoporous Channel Host”, Science, 264, 1757 (1994)
    80.Ch. R. Martin, “Template Synthesis of Electronically Conductive Polymer Nanostructures”, Acc. Chem. Res., 28, 61 (1995)
    81.L. Yu, J. I. Lee, K. W.Shin, C. E. Park, and R. Holze, “Preparation of aqueous polyaniline dispersions by micellar-aided polymerization”, J. Appl. Polym. Sci., 88, 1550 (2003)
    82.J. M. Liu and S. C. Yang, “Novel colloidal polyaniline fibrils made by template guided chemical polymerization”, J. Chem. Soc., Chem. Commun., 21, 1529 (1991)
    83.J. Huang, S. Virji, B. H. Weiller, and R. B. Kaner, “Polyaniline Nanofibers: Facile Synthesis and Chemical Sensors”, J. Am. Chem. Soc., 125, 314 (2003)
    84.J. Huang and R. B. Kaner, “A General Chemical Route to Polyaniline Nanofibers”, J. Am. Chem. Soc., 126, 851 (2004)
    85.S.E. Moulton, P.C. Innis, L.A.P. Kane-Maguire, O. Ngamna, and G. G. Wallace, “ Polymerisation and characterisation of conducting polyaniline nanoparticle dispersions”, Curr. Appl. Phys., 4, 402 (2004)

    下載圖示 校內:2009-06-29公開
    校外:2009-06-29公開
    QR CODE