| 研究生: |
邱奕崇 Chiu, I-Chung |
|---|---|
| 論文名稱: |
誘導後比生長速率對基因重組大腸桿菌生產肌酸酵素的影響 Effect of post-induction specific growth rate on the production of creatinase by a recombinant Escherichia coli |
| 指導教授: |
陳特良
Chen, Teh-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 肌酸酵素 、大腸桿菌 、誘導後比生長速率 |
| 外文關鍵詞: | Escherichia coli, creatinase, post-induction specific growth rate |
| 相關次數: | 點閱:92 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
誘導後比生長速率對基因重組大腸桿菌生產肌酸酵素的影響,藉由饋料批次培養來進行探討。在此,誘導後比生長速率會受到饋料速率的控制。在重組酵素生產階段裡,細胞質量倍增前細胞可維持良好的質體安定性,此結果顯示質體脫落之時機在細胞分裂時。在誘導後比生長速率範0.088~0.429 h-1之間,隨著誘導後比生長速率的降低,肌酸酵素的比產量也會增加,但肌酸酵素的比生產速率卻隨著下降。
The effect of post-induction specific growth rate µ on the productionof creatinase by a recombinant Escherichia coli was examined with the mode of fed-batch culture, where µ was controlled by the feeding rate. It was found that in the enzyme production phase, the plasmid stability could be maintained before the cell mass became double, suggesting that the loss of plasmid occurs during cell fission. In addition, in the range of µ = 0.088−0.429 h−1, the specific creatinase yield (YP/X) increased with decreasing µ, while the specific production rate of creatinase (qP) increased with increasing µ.
Aiba, S. and Koizumi, J.I., “Effects of temperature on plasmid stability
and penicillinsae productivity in a transformant of Bacillus
stearothermophilus,” Biotechnol. Bioeng., 26, 1026-1031 (1984).
Béal, C., D’Angio, C., and Corrieu G., “pH infiuences growth and
plasmid stability of recombinant Lactococcus lactis subsp. lactis,”
Biotechnol. Lett., 7, 679-682 (1998).
Chang M.-C., Chang C.-C., and Chang J.-C., “Cloning of a creatinase
gene form Pseudomonas putida in Escherichia coli by using an
indicator plate,” Appl. Environ. Microbiol., 58, 3437-3440 (1992).
Dwivedi, C.P., Imanaka, T., and Aiba, S., “Instability of
plasmid-harboring strain of E.coli in continuous culture,” Biotechnol.
Bioeng., 24, 1465-1468 (1982).
Gastan, A. and Enfors, S.-O., “Characteristic of a DO-controlled
fed-batch cultureof Escherichia coli,” Bioprocess Eng., 22, 509-515
(2000).
Gupta, R., Sharma, P., and Vyas, V.V., “Effect of growth environment on
the stability of recombinant shuttle plasmid, pCppS-31, in
Escherichia coli,” J. Biotechnol., 41, 29-37 (1995).
Heng, H. W., Kim, Y. C., Lee, S. Y., and Chang, H. N., “Effect of
post-induction nutrient feeding strategies on the production of
bioadhesive protein in Escherichia coli,” Biotechnol. Bioeng., 60,
271-276 (1998).
Hoeffken, H.W., Knof, S.H., Bartlett, P.A., Huber, R., Moellering, H., and
Schumacher, G., “Crystal structure determination, refinement and
molecular model of creatine amidinohydrolase from Pseudomonas
putida,” J. Mol. Biol., 204, 417─433 (1988).
Hopkins, D.J., Betenbaugh, M.J., and Dhurjati, P., “Effects of dissolved
oxygen of recombinant Escherichia coli containing plasmid
pKN401,” Biotechnol. Bioeng., 29, 85-91 (1987).
Jung, G., Denefle, P., Becquart, J., and Mayaux, J.-F., “High-cell density
fermentation studies of recombinant Escherichia coli strains
expressing human interleukin-1β,” Ann. Inst. Pasteur Microbiol.,
139, 129-146 (1988).
Kaplan, A. and Naugler, D., ”Creatinine hydrolase and creatine
amidinohydrolase.I. presence in cell-free extracts of Arthrobacter
ureafaciens,” Mol. Cell. Biochem., 3, 9-15 (1974).
Koyama, Y.S., Kitao, H., Yamamoto, O.M., and Susuki, E.N., “Cloning
and expression of the creatinase gene form Flavobacterium
sp.U-188 in Escherichia coli,” Agric. Biol. Chem., 54, 1453-1457
(1990).
Lim, H.K. and Jung, K.H., “Improvement of heterologous protein
productivity by controlling postinduction specific groeth rate in
recombinant Escherichia coli under control of the PL Promoter,”
Biotechnol. Prog., 14, 548-553 (1998).
Matsuda, Y., Wakamatsu, N., Inouye, Y., Uede, S., Hashimoto Y., Asano
K., and Nakamura, S., “Purification and characterization of creatine
amidinohydrolase Alcaligenes origin,” Chem. Pharm. Bull., 34,
2155-2160 (1986).
Nancib, N. and Boudrant, J., “Effect of growth rate on stability and gene
expression of a recombinant plasmid during continuous culture of
Escherichia coli in a non-selective medium,” Biotechnol. Lett., 14,
643-648 (1992).
Parker, C. and DiBiasio, D., “Effect of growth rate and expression level
on plasmid stability in Saccharomyces cerevisiae,” Biotechnol.
Bioeng., 29, 215-221 (1987).
Prescott, L., Harley, J.P., and Klein, D.A., Microbiology, pp. 244, 320,
McGraw Hill, New York (1999).
Ryan, W. and Parulekar, S.J., “Recombinant protein synthesis and
plasmid instability in continuous cultures of Escherichia coli JM103
harboring a high copy number plasmid,” Biotechnol. Bioeng., 37,
415-429 (1991).
Sakamoto, S., Iijima, M., Matsuzawa, H., and Ohta, T., “Production of
thermophilic protease by glucose-controlled fed-Batch culture of
recombinant Escherichia coli,” J. Ferment. Bioeng., 4, 304-309
(1994).
Shin, C.S., Hong, M.S., Bae, C.S., and Lee, J., “Enhanced production of
human mini-proinsulin in fed-batch culture at high cell density of
Escherichia coli BL21(DE3)[pET-3aT2M2],” Biotechnol. Prog., 13,
249-257 (1997).
Sunitha, K., Kim, Y.O., Lee, J.K., and Oh, T.K., “Statistical optimzation
of seed induction conditions to enhance phytase production by
recombinant Escherichia coli,” Biochem. Eng. J., 5, 51-56 (2000).
Varma, A. and Palsson, B.O., “Predictions for oxygen supply control to
enhance population stability of engineered production strains,”
Biotechnol. Bioeng., 43, 275-285 (1994).
Zhan, X., Zhu, L., Wu, J., Zhen, Z., and Jia, W., “Production of polysialic
acid from fed-batch fermentation with pH control,” Biochem. Eng. J.,
11, 201-204 (2002).