簡易檢索 / 詳目顯示

研究生: 邱奕崇
Chiu, I-Chung
論文名稱: 誘導後比生長速率對基因重組大腸桿菌生產肌酸酵素的影響
Effect of post-induction specific growth rate on the production of creatinase by a recombinant Escherichia coli
指導教授: 陳特良
Chen, Teh-Liang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 65
中文關鍵詞: 肌酸酵素大腸桿菌誘導後比生長速率
外文關鍵詞: Escherichia coli, creatinase, post-induction specific growth rate
相關次數: 點閱:92下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   誘導後比生長速率對基因重組大腸桿菌生產肌酸酵素的影響,藉由饋料批次培養來進行探討。在此,誘導後比生長速率會受到饋料速率的控制。在重組酵素生產階段裡,細胞質量倍增前細胞可維持良好的質體安定性,此結果顯示質體脫落之時機在細胞分裂時。在誘導後比生長速率範0.088~0.429 h-1之間,隨著誘導後比生長速率的降低,肌酸酵素的比產量也會增加,但肌酸酵素的比生產速率卻隨著下降。

      The effect of post-induction specific growth rate µ on the productionof creatinase by a recombinant Escherichia coli was examined with the mode of fed-batch culture, where µ was controlled by the feeding rate. It was found that in the enzyme production phase, the plasmid stability could be maintained before the cell mass became double, suggesting that the loss of plasmid occurs during cell fission. In addition, in the range of µ = 0.088−0.429 h−1, the specific creatinase yield (YP/X) increased with decreasing µ, while the specific production rate of creatinase (qP) increased with increasing µ.

    中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅲ 總目錄 Ⅴ 表目錄 Ⅷ 圖目錄 Ⅸ 參數定義 XI 第一章緒論 1-1 前言 1 1-2 誘導機制 5 1-3 肌酸酵素 11 1-4 醱酵策略簡介 12 1-5 研究目的 13 第二章實驗材料與方法 2-1 菌株和藥品 2-1-1 菌株 15 2-1-2 藥品 17 2-2 儀器與藥品 18 2-3 培養基的組成 20 2-4 實驗方法 2-4-1 菌株的保存 20 2-4-2 菌體的活化與前培養 25 2-4-3 醱酵實驗 25 2-5 分析方法 2-5-1 菌體濃度分析法 30 2-5-2 肌酸酵素活性分析 32 2-5-3 質體穩定性測定 35 2-6 饋料批次 2-6-1 饋料速率的預估 35 2-6-2 比生長速率的計算 37 第三章結果與討論 3-1 培養基的選擇 40 3-2 批次實驗 44 3-3 饋料批次實驗 49 第四章結論 61 參考文獻 62 自述 65

    Aiba, S. and Koizumi, J.I., “Effects of temperature on plasmid stability
    and penicillinsae productivity in a transformant of Bacillus
    stearothermophilus,” Biotechnol. Bioeng., 26, 1026-1031 (1984).

    Béal, C., D’Angio, C., and Corrieu G., “pH infiuences growth and
    plasmid stability of recombinant Lactococcus lactis subsp. lactis,”
    Biotechnol. Lett., 7, 679-682 (1998).

    Chang M.-C., Chang C.-C., and Chang J.-C., “Cloning of a creatinase
    gene form Pseudomonas putida in Escherichia coli by using an
    indicator plate,” Appl. Environ. Microbiol., 58, 3437-3440 (1992).

    Dwivedi, C.P., Imanaka, T., and Aiba, S., “Instability of
    plasmid-harboring strain of E.coli in continuous culture,” Biotechnol.
    Bioeng., 24, 1465-1468 (1982).

    Gastan, A. and Enfors, S.-O., “Characteristic of a DO-controlled
    fed-batch cultureof Escherichia coli,” Bioprocess Eng., 22, 509-515
    (2000).

    Gupta, R., Sharma, P., and Vyas, V.V., “Effect of growth environment on
    the stability of recombinant shuttle plasmid, pCppS-31, in
    Escherichia coli,” J. Biotechnol., 41, 29-37 (1995).

    Heng, H. W., Kim, Y. C., Lee, S. Y., and Chang, H. N., “Effect of
    post-induction nutrient feeding strategies on the production of
    bioadhesive protein in Escherichia coli,” Biotechnol. Bioeng., 60,
    271-276 (1998).

    Hoeffken, H.W., Knof, S.H., Bartlett, P.A., Huber, R., Moellering, H., and
    Schumacher, G., “Crystal structure determination, refinement and
    molecular model of creatine amidinohydrolase from Pseudomonas
    putida,” J. Mol. Biol., 204, 417─433 (1988).

    Hopkins, D.J., Betenbaugh, M.J., and Dhurjati, P., “Effects of dissolved
    oxygen of recombinant Escherichia coli containing plasmid
    pKN401,” Biotechnol. Bioeng., 29, 85-91 (1987).

    Jung, G., Denefle, P., Becquart, J., and Mayaux, J.-F., “High-cell density
    fermentation studies of recombinant Escherichia coli strains
    expressing human interleukin-1β,” Ann. Inst. Pasteur Microbiol.,
    139, 129-146 (1988).

    Kaplan, A. and Naugler, D., ”Creatinine hydrolase and creatine
    amidinohydrolase.I. presence in cell-free extracts of Arthrobacter
    ureafaciens,” Mol. Cell. Biochem., 3, 9-15 (1974).

    Koyama, Y.S., Kitao, H., Yamamoto, O.M., and Susuki, E.N., “Cloning
    and expression of the creatinase gene form Flavobacterium
    sp.U-188 in Escherichia coli,” Agric. Biol. Chem., 54, 1453-1457
    (1990).

    Lim, H.K. and Jung, K.H., “Improvement of heterologous protein
    productivity by controlling postinduction specific groeth rate in
    recombinant Escherichia coli under control of the PL Promoter,”
    Biotechnol. Prog., 14, 548-553 (1998).

    Matsuda, Y., Wakamatsu, N., Inouye, Y., Uede, S., Hashimoto Y., Asano
    K., and Nakamura, S., “Purification and characterization of creatine
    amidinohydrolase Alcaligenes origin,” Chem. Pharm. Bull., 34,
    2155-2160 (1986).

    Nancib, N. and Boudrant, J., “Effect of growth rate on stability and gene
    expression of a recombinant plasmid during continuous culture of
    Escherichia coli in a non-selective medium,” Biotechnol. Lett., 14,
    643-648 (1992).

    Parker, C. and DiBiasio, D., “Effect of growth rate and expression level
    on plasmid stability in Saccharomyces cerevisiae,” Biotechnol.
    Bioeng., 29, 215-221 (1987).

    Prescott, L., Harley, J.P., and Klein, D.A., Microbiology, pp. 244, 320,
    McGraw Hill, New York (1999).

    Ryan, W. and Parulekar, S.J., “Recombinant protein synthesis and
    plasmid instability in continuous cultures of Escherichia coli JM103
    harboring a high copy number plasmid,” Biotechnol. Bioeng., 37,
    415-429 (1991).

    Sakamoto, S., Iijima, M., Matsuzawa, H., and Ohta, T., “Production of
    thermophilic protease by glucose-controlled fed-Batch culture of
    recombinant Escherichia coli,” J. Ferment. Bioeng., 4, 304-309
    (1994).

    Shin, C.S., Hong, M.S., Bae, C.S., and Lee, J., “Enhanced production of
    human mini-proinsulin in fed-batch culture at high cell density of
    Escherichia coli BL21(DE3)[pET-3aT2M2],” Biotechnol. Prog., 13,
    249-257 (1997).

    Sunitha, K., Kim, Y.O., Lee, J.K., and Oh, T.K., “Statistical optimzation
    of seed induction conditions to enhance phytase production by
    recombinant Escherichia coli,” Biochem. Eng. J., 5, 51-56 (2000).

    Varma, A. and Palsson, B.O., “Predictions for oxygen supply control to
    enhance population stability of engineered production strains,”
    Biotechnol. Bioeng., 43, 275-285 (1994).

    Zhan, X., Zhu, L., Wu, J., Zhen, Z., and Jia, W., “Production of polysialic
    acid from fed-batch fermentation with pH control,” Biochem. Eng. J.,
    11, 201-204 (2002).

    下載圖示 校內:立即公開
    校外:2004-07-19公開
    QR CODE