簡易檢索 / 詳目顯示

研究生: 陳俊吉
Chen, Chun-Chi
論文名稱: 低塑性粉土工程性質之研究
Study on Engineering Properties of Low-Plasticity Silty Sand
指導教授: 陳景文
Chen, Jing-Wen
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 267
中文關鍵詞: 低塑性粉土動態工程性質內沖蝕性質土壤液化潛能
外文關鍵詞: Low-plasticity silty sand, Dynamic engineering properties, Internal erosion properties, Soil liquefaction potential
相關次數: 點閱:197下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣西南部地區土層富含顆粒細小且不具塑性之低塑性粉土,工程設計上,常將其與黏土一併視為細粒料,或直接視為砂土,故低塑性粉土工程性質一直未受各界關注。1999年集集地震使台灣中部地區發生大規模土壤液化破壞,由相關災害調查結果顯示,多數土壤液化現象發生於低塑性細粒料含量較高之土層,故引起各界對低塑性粉土工程性質之研究興趣。但傳統取樣法不易於敏感及高含水量之低塑性粉土地層取得原狀土樣,故對於原狀低塑性粉土之工程性質研究至今仍未見具體成果;2004至2005年間,台灣南部地區於低塑性粉土地層接連發生嚴重地質災害,其破壞模式為低塑性粉土之顆粒流失引發管湧災害,進而導致隧道與深開挖破壞,然而,受限於傳統試驗法之儀器限制,至今工程界仍無法掌握低塑性粉土之內沖蝕特性。
    為瞭解低塑性粉土之完整工程性質,本研究使用新式Gel-Push取樣器,取得高品質未擾動原狀試體。藉由原狀與重模試體之動態試驗結果得知,土壤強度隨低塑性細粒料含量增加而降低,且低塑性粉土易因擾動而軟化,此外,上述現象會隨細粒料含量增加而趨於明顯。
    又為探討低塑性粉土內沖蝕性質,研究中結合傳統三軸試驗與針孔試驗開發Flexible Wall Pin Hole試驗儀。由低塑性粉土內沖蝕試驗結果顯示,低塑性粉土之抗內沖蝕能力受試體細粒料含量、緊密程度與圍壓大小所影響,其內沖蝕破壞潛能隨低塑性細粒料含量與孔隙比增加而降低,且圍壓較大時,其內沖蝕破壞潛能較小。
    最後,藉由原狀低塑性粉土試體之試驗結果與傳統土壤液化潛能評估法之分析結果比對發現,現行評估法應用於低塑性粉土地層時會低估土層之液化潛能,故於低塑性粉土地層進行土壤液化潛能評估時,應採用室內試驗分析法為佳。

    The soil strata in southwestern Taiwan are dominant in low-plasticity silty sand with fine particles and low-plastic. In engineering design, low-plasticity silty sand was considered as general fine-grained soil, so the engineering properties of low-plasticity silty sand were ignored before. During the 1999 Chi-Chi earthquake, serious soil liquefaction damages were observed in central Taiwan. The post-earthquake study indicated that most soil liquefactions were occurred in silty sand deposits with high fines content. Therefore, the engineering properties of low-plasticity silty sand have been of great research interests in soil liquefaction. However, difficulties occurred in undisturbed sampling of sensitive low-plasticity silty sand material with high fines content and high water content. And the undisturbed engineering properties of low-plasticity silty sand have yet to see. In 2004 to 2005, several catastrophic subway construction failures occurred in south Taiwan. Results of forensic investigation indicated that piping failure of non-plastic silty sand is the dominated factor causing serious tunnel and excavation pit collapses. However, because the limitations of traditional test method, so the engineer can’t understand the internal erosion properties of low-plasticity silty sand.
    In an effort to investigate the engineering properties of low-plasticity silty sand, this study had adopted a recently developed “Gel-Push” sampling technique to obtain undisturbed soil samples. Results of cyclic triaxail tests on undisturbed and remolded specimens indicate that, higher non-plastic fines content of silty sand would result in lower cyclic liquefaction resistance. Such low-plasticity silty sand deposits would have less liquefaction resistance when they are subjected to disturbance. And this phenomenon would become much more noticeable on the remolded soil specimens.
    In order to investigate the internal erosion properties of low-plasticity silty sand, the Flexible Wall Pin Hole Test Device, FWPH, was developed by combining concepts of the conventional Pin Hole test and the triaxial test. Test results of FWPH showed that internal erosion potential of low-plasticity silty sand was affected by its fines content, density and confining pressure. Low-plasticity silty sand at loose state has much higher internal erosion potential than it at dense state. Moreover, when higher confining pressures were maintained, low-plasticity silty sand had less internal erosion potential. Most of all, higher fines content of the low-plasticity silty sand, higher internal erosion potential is clearly observed.
    Finally, comparing the triaxial test results of undisturbed specimen with the analysis results of traditional soil liquefaction potential assessment method indicated that the traditional assessment method will underestimate the liquefaction potential in low-plasticity silty sand deposits. Therefore, the triaxial test analysis of undisturbed specimen was recommended to adopt for soil liquefaction potential assessment in low-plasticity silty sand deposits.

    摘要 I Abstract III 目錄 VII 表目錄 XI 圖目錄 XIII 照片目錄 XVII 符號說明 XIX 第一章 前言 1 1-1 研究背景 1 1-2 研究動機 2 1-3 研究目的 3 1-4 研究架構 4 第二章 文獻回顧 9 2-1低塑性粉土工程災害案例 9 2-1-1 土壤液化災害 9 2-1-2 基礎過量沉陷 17 2-1-3 土壤內沖蝕災害 22 2-2 土壤之細粒料 27 2-2-1 細粒料對土壤動態工程性質之影響 28 2-2-2 細粒料對土壤組構之影響 34 2-3 土壤液化分析 39 2-3-1 SPT簡易經驗法則 40 2-3-2 SPT-N值修正法 42 2-3-3 細粒料含量對土壤液化阻抗之影響 44 2-3-4 土壤液化後體積應變 50 2-4 土壤顆粒流失 53 2-4-1 漫流與沖蝕 53 2-4-2 土壤顆粒穩定分析 56 2-5 小結 70 第三章 儀器介紹 73 3-1 Gel Push取樣器 73 3-1-1 GP取樣器構造介紹 74 3-1-2 GP取樣器之優點 75 3-1-3 GP取樣器操作介紹 77 3-1-4 取樣成果比較 83 3-2 土壤三軸試驗 85 3-2-1 動態三軸試驗儀 85 3-2-2 試驗步驟 89 3-3 Flexible Wall Pin Hole試驗儀 95 3-3-1 儀器介紹 95 3-3-2 儀器測試 102 3-3-3 試驗方法 112 第四章 土樣說明 117 4-1 研究場址介紹 117 4-1-1 太保地區 118 4-1-2 新化地區 120 4-1-3 歸仁地區 121 4-1-4 高雄地區 123 4-2 土樣性質彙整 125 4-2-1 基本物理性質 125 4-2-2 微觀分析 128 4-2-3 低塑性細粒料與土壤組構關係 143 第五章 土壤靜態試驗結果與分析 149 第六章 土壤動態試驗結果與分析 159 6-1 試驗結果 159 6-2 動態試驗結果分析 178 6-2-1 動態強度 178 6-2-2 土壤液化後體積應變 188 第七章 土壤內沖蝕試驗結果與分析 191 7-1 試驗結果 191 7-2 試驗結果分析 206 7-2-1 試體緊密程度之影響 206 7-2-2 低塑性細粒料含量之影響 217 7-2-3 有效圍束應力之影響 221 第八章 現行土壤液化評估法適用性探討 229 8-1 試驗數據處理分析 229 8-2 土壤液化阻抗值評估 233 第九章 結論與建議 239 9-1 結論 239 9-2 建議 242 參考文獻 243 附錄一 動態三軸試驗記錄 249 附錄二 內沖蝕試驗記錄 257

    1. Amini, F. and Qi, G.Z., “Liquefaction testing of stratified silty sands,” Journal of Geotechnical and Geoenviromental Engineering, ASCE, Vol. 126, No. 3, pp. 208-217(2000).
    2. Casagrande A., “Classification and identification of soils,” Public Roads, Vol. 13, pp. 121-136(1948).
    3. Chang, N.Y., “Influence of fines content and plasticity on earthquake-induced soil liquefaction,” Contract report to US Army Engineer Waterways Experiment Station, Vicksburg, MS, Contract No. DACW3988-C-0078(1990).
    4. Chen, Y. R., Hsieh, S. C. and Liu, C. H., "Simulation of stress-strain behavior of saturated sand in undrained triaxial tests based on genetic adaptive neural networks," Electronic Journal of Geotechnical Engineering, Vol. 15, Bund. Q, pp. 1815-1834(2010).
    5. Chien, L. K., Oh, Y. N. and Chang, C. H., ”Effects of fines content on liquefaction strength and dynamic settlement of reclaimed soil,” Canadian Geotechnical Journal, Vol. 39, pp. 254-265(2002).
    6. Cubrinovski M. and Ishihara K., “Empirical correlation between SPT N-value and relative density for sandy soils,” Soils and Foundations, Vol. 39, No. 5, pp. 61-71(1999).
    7. Cubrinovski M. and Ishihara K., “Maximum and minimum void ratio characteristics of sands,” Soils and Foundations, Vol. 42, No. 6, pp.65-78(2002).
    8. Cubrinovski, M., Rees, S. and Bowman, E., “Effects of non-plastic fines on liquefaction resistance of sandy soils,” In M. Garevski and A. Ansal (Eds.), Earthquake Engineering in Europe. Geotechnical, Geological, and Earthquake Engineering 17. pp.125-144(2010).
    9. Erik I. Hjeldnes and Bhagwat V. K. Lavania, “Cracking, leakage, and erosion of earth dam materials,” Journal of the Geotechnical Engineering Division, Vol. 106, pp.117-135(1980).
    10. Guo, T. and Prakash, S., "Liquefaction of silts and silt-clay mixtures", Journal of the Geotechnical Engineering, Vol. 125, No. 8, pp. 706-710(1999).
    11. Huang, A.B., Tai, Y.Y., Lee, W.F. and Ishihara, K., “Sampling and field characterization of the silty sand in Central and Southern Taiwan,” Proc. 3rd Intl. Conference on Site Characterization(2008).
    12. Huang, Y.T., Huang, A.B., Kuo, Y.C. and Tsai, M.D., “A laboratory study on the untrained strength of a silty sand from central western Taiwan,” Soil Dynamics and Earthquake Engineering, Vol.24, No.9-10, pp.733-743(2004).
    13. Ishihara, K., “Geotechnical aspects of the 1995 Kobe earthquake,” Proceedings 14th International Conference on Soil Mechanics and Foundation Engineering, Terzaghi Oration, Hamburg (1997).
    14. Ishihara, K., Soil Behavior in Earthquake Geotechnics (1983).
    15. Ishihara, K., Trancoso, J., Kawase, Y. and Takahashi, Y., “Cyclic strength characteristics of tailings materials,” Soils and Foundations, Vol. 20, No.4, pp.127-142(1980).
    16. Juang, C. H. and Chen, C. J. “CPT-based liquefaction evaluation using artificial neural Networks,” Computer-Aided Civil and Infrastructure Engineering, Vol. 14, Issue 3, pp.221-229(1999).
    17. Kenney, T. C. and Lau, D., “Internal stability of granular filters,” Canadian Geotechnical Journal, Vol. 22, pp.215-225(1985).
    18. Kenney, T. C. and Lau, D., “Discussion on Internal stability of granular filters,” Canadian Geotechnical Journal, Vol. 23, pp.420-423.(1986).
    19. Kokusho, T. and Fujikura Y., “Effect of particle gradation on seepage failure in granular soils,” Fourth international conference on scour and erosion, pp.497-504(2008).
    20. Lee, W.F., Chu, B.L., Lin, C.C. and Chen, C.H., “Liquefaction induced ground failures at Wu Feng caused by strong ground motion during 1999 Chi-Chi Earthquake,” Earthquake Geotechnical Case Histories for Performance-Based Design, pp. 388-412(2009).
    21. Nagase, H. and Ishihara, K., “Liquefaction induced compaction and settlement of sand during earthquakes,” Soils and Foundations, Vol. 28, No. 1, pp. 65-76(1988).
    22. Ni, S. H., and Fan, E. S., “Fines content effect on liquefaction potential evaluation for sites liquefied during Chi-Chi earthquake, 1999,” Journal of the Chinese Institute of Engineers, Vol. 25, No. 5, pp. 533-542(2002).
    23. Papadopoulou A. and Tika T., “The effect of fines on critical state and liquefaction resistance characteristics of non-plastic silty sands,” Soils and Foundations, Vol. 48, No. 5, pp. 713-725(2008).
    24. Polito, C.P. and Martin, J.R., “Effects of nonplastic fines on the liquefaction resistance of sands,” Journal of the Geotechnical Engineering, Vol. 127, No. 5, pp. 408-415(2001).
    25. Seed, H. B. “Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes,” Journal of the Geotechnical Engineering Division, Vol. 105, GT2, pp. 201-255(1979).
    26. Seed, H. B. and Idriss, I. M., “Analysis of soil liquefaction: Niigata earthquake,” Journal of the Soil Mechanics and Foundations Division, Vol.93, No.SM3, pp. 83-108(1967).
    27. Seed, H. B. and Idriss, I. M., “Simplified procedure for evaluating soil liquefaction potential,” Journal of the Soil Mechanics and Foundations Division, Vol.97, No.SM9, pp. 1249-1273(1971).
    28. Seed, H. B., Idriss, I. M., and Arango, I., “Evaluation of liquefaction potential using field performance data,” Journal of the Geotechnical Engineering, Vol. 109, No. 3, pp. 458-482(1983).
    29. Seed, H. B., Tokimatsu, K., Harder, L. F. and Chung, R. M., “Influence of SPT procedures in soil liquefaction resistance evaluation,” Journal of Geotechnical Engineering, Vol.111, No.12, pp. 1425- 1445(1985).
    30. Seed, H. B. and Harder, Jr., L. F., “SPT-based analysis of cyclic pore pressure generation and undrained residual strength,” Proc., H. B. Seed Memorial Symp., Vol. 2, pp. 351-376(1990).
    31. Shen, C. K., Vrymoed, J. L. and Uyeno, C. K., “The effect of fines on liquefaction of sands,” Proceeding of the Ninth International Conference on Soil Mechanics and Foundation Engineering, Vol. 2, pp.381-385(1977).
    32. Skempton, A. W., and Brogan, J. M. "Experiments on piping in sandy gravels," Geotechniqus, Vol. 44, No.3, pp. 449-460(1994).
    33. Sherard, J. L., “Sinkholes in dams of coarse, broadly graded soils,” Geotechnical Special Publication, No. 32, pp.324-335(1992).
    34. Terzaghi, K., Erdbaumechanik, Vienna: Deuticke (1939).
    35. Tomlinson, S. S. and Vaid, Y. P., "Seepage forces and confining pressure effects on piping erosion," Canadian Geotechnical Journal, Vol. 37, No.1. pp. 1-13. (2000).
    36. Tsukamoto, Y., Ishihara, K. and Sawada, S., “Settlement of silty sand deposits following liquefaction during earthquakes”, Soils and Foundations, Vol. 44, No. 5, pp. 135-148(2004).
    37. Ueng, T. S., Sun, C. W. and Chen, C. W., “Definition of fines and liquefaction resistance of Mulou River soil,” Soil Dynamics and Earthquake Engineering, Vol. 24, pp. 745-750(2004).
    38. Xenaki, V. C. and Athanasopoulos, G. A., “Liquefaction resistance of sand-silt mixtures: an experimental investigation of the effects of fines,” Soil Dynamics and Earthquake Engineering, Vol. 23, pp. 183-194(2003).
    39. Yamamuro, J. A. and Poul V. Lade, “Experiments and modeling of silty sands susceptible to static liquefaction,” Mechanics of Cohesive-Frictional Materials, Vol. 4, pp. 545-564(1999).
    40. Youd, T. L., and Idress, I. M., “Proceeding of the NCEER workshop on evaluation of liquefaction resistance of soil,” Technical Report NCEER-97-0022, Zlatovic, (1997).
    41. Youd, T. L., Idriss, I. M., Andrus, R. D., Arango, I., Castro, G., Christian, J. T., Dorby, R., Finn, W. D. L., Jr., Harder, L. F., Hynes, M. E., Ishihara, K., Koester, J. P., Liao, S. S. C., Marcuson Ⅲ, W. F., Martin, G. R., Mitchell, J. K., Moriwaki, Y., Power, M. S., Robertson, P. K., Seed, R. B., and Stokoe Ⅱ, K. H., “Proceeding of the NCEER workshop on evaluation of liquefaction resistance of soils”, Summary Report, pp.1-41, Buffalo, (1996).
    42. Zlatovic, S. and Ishihara, K., “Normalized behavior of very loose non-plastic soils: effects of fabric,” Soils and Foundations, Vol. 37, No.4. pp. 47-56(1997).
    43. 中華人民共和國國家標準。,「建築抗震設計規範」,中國建築工業出版社,北京(1989)
    44. 日本道路協會,「道路橋示方書.同解說.Ⅴ耐震設計篇」,(1990)。
    45. 日本道路協會,「道路橋示方書.同解說.Ⅴ耐震設計篇」,(1996)。
    46. 台灣營建研究院,「高雄捷運工程橘線CO1區段標LUO01車站連續壁滲水坍塌事故再分析與對應契約影響之研究」,(2007)。
    47. 台灣營建研究院,「高雄捷運工程橘線CO1區段標LUO04潛盾隧道事故範圍內地盤穩定鑑定報告」,(2004)。
    48. 台灣營建研究院,「高雄捷運工程橘線CO2區段標 LUO09潛盾隧道坍陷原因鑑定」(2006)。
    49. 吳偉特,「台灣地區砂性土壤液化潛能之初步研究」,土木水利,第六卷,第二期,第39-70頁(1979)。
    50. 李雅芬,「基於可靠度理論之土壤液化機率評估法之研究」,國立成功大學土木工程研究所博士論文,臺南(2007)。
    51. 亞新工程顧問股份有限公司,「土壤液化評估與處理對策研擬第一期計畫(彰化縣員林鎮、大村鄉及社頭鄉)土壤液化現狀調查報告」(2000)。
    52. 黃安斌,張嘉偉、何應璋,葉嘉鎮,「雲林麥寮粉土細砂之工程性質」,地工技術,第67期,第66-68頁(2007)。
    53. 黃俊鴻,陳正興,「土壤液化評估規範之回顧與前瞻」,地工技術,第70期,第23-44頁(1998)。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE