| 研究生: |
李昱緯 Lee, Yu-Wei |
|---|---|
| 論文名稱: |
被動控制式水平軸風力發電機葉片系統之最佳設計-模擬與實驗 Optimal Design of a Passively Controlled Horizontal Wind Turbine Blade System - Simulations and Experiments |
| 指導教授: |
夏育群
Shia, Yu-Chiun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 水平軸風力發電機 、升力 、失速 、數值模擬 、風洞實驗 、普利盤被動式襟翼之機構設計 、田口方法 |
| 外文關鍵詞: | horizontal axis wind turbine, numerical simulation, wind tunnel experiment, Passive pitch control, Taguchi method |
| 相關次數: | 點閱:126 下載:20 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來綠色能源蓬勃發展,其中風能的發展備受矚目。台灣為熱帶、副熱帶季風氣候與地形影響,因此擁有許多良好的風場,但其缺點為每年都有強度大小不同的颱風過境。當極端風速來臨時,風力發電機將會超過其額定轉數,造成發電機、轉軸與葉片之損壞,因此往往以停機之方法處理。
有鑑於此,本研究將致力於研發一台新式小型風力發電機,其擁有普利盤被動控制襟翼之機構設計,靈感來自於飛機之後緣襟翼(開縫式襟翼),能在低轉數時將葉片向壓力面彎曲增加翼型彎度,藉此提高葉片轉動時所產生之升力;在高轉數時能將葉片打向翼型吸力面造成失速現象,以此來降低風力發電機轉數、保護發電機與軸承並維持發電效率。
本研究將利用Solidworks之繪圖軟體來進行普利盤機構與葉片襟翼機構之設計與改良,並利用ANSYS Fluent之CFD軟體進行數值模擬分析,以預測此機構是否可行,如經風洞實驗驗證可行,便進行田口方法針對低轉數區域之最佳化分析,設計出能在低轉數區域有最佳C_p值;在高轉數下能有效降低轉數並提供穩定功率輸出之適用於都會型風場小型風力發電機,提供一般家庭所使用。
This research will focus on the development of a new small-scale wind turbine with a passively pitch controlled flap design that is inspired by the trailing edge flaps (slotted flaps) that can be used at low revolutions. The flap bends to the surface pressure to increase the airfoil camber, thereby increasing the lift generated when the blade rotates; at high rotations, the blade can be driven toward the airfoil suction surface to cause stall, thereby reducing the number of wind turbine revolutions, protecting the generators and maintain power generation efficiency.
This study will use Solidworks to design and improve the Ply disk mechanism and blade flap mechanism, and use ANSYS Fluent's CFD software for numerical simulation analysis to predict whether this mechanism is feasible, such as wind tunnel test verification. The Taguchi method is optimized for low-turn areas, and has the best Cp value in low-turn areas. It can effectively reduce the number of revolutions and provide stable power output at high rotations. Small wind turbines are available for general household use.
[1] Yu-Jen Chen Design, Simulation and Experiment on the Performance of Small Scale Horizontal Axis Wind Turbine Systems
[2] 升/阻力混合型風機葉片之最佳化設計Optimal Design of Lift/Drag Mixed type Wind Turbine Blades
[3] J.J.G. Michaels. Selig, Andy P. Broeren “Low-Speed-Airfoil-Data-V1”, Department of Aeronautical and Astronautical Engineering, University of Illinois at Urbana-Champaign, USA, P.286. (1995)
[4] Hsieh, C., J. Miao, and J. Chen, Experimental and numerical studies of torque and power generation in a vertical axis wind turbine. National Cheng Kung University, 2009.
[5] T. Burton, D. Sharpe, N. Jenkins, and E. Bossanyi, wind energy handbook: John Wiley & Sons Ltd, 2001.
[6] 李輝煌,“田口方法:品質設計的原理與實務”,高麗圖書有限公司出版,2008年。 An Aerodynamic Model", Physical Review Letters Vol.100 (5), (2008)
[7] Meng-Hsien Lee, “Numerical Simulation of The Aerodynamic Performance of Horizontal-Axis Wind Turbine Blades”, Department of Aeronautics and Astronautics, National Cheng Kung University. (2014)
[8] Kao, Y.-M., Calibration of the ABRI Environment Wind Tunnel and Experimental Study of 2-D Bluff-Body Aerodynamic Flows. Master of Science Thesis, 2005: p. 1-141.
[9] Cook, N.J., A boundary layer wind tunnel for building aerodynamics. Journal of Wind Engineering and Industrial Aerodynamics, 1975. 1: p. 3-12.
[10] S. Rajendran and D. Jena, "Backstepping sliding mode control of a variable speed wind turbine for power optimization," Journal of Modern Power Systems and Clean Energy, vol. 3, pp. 402-410, Sep 2015.
[11] M. Seker, E. Zergeroglu, and E. Tatlicioglu, "Non-linear control of variable-speed wind turbines with permanent magnet synchronous generators: a robust backstepping approach," International Journal of Systems Science, vol. 47, pp. 420-432, Jan 25 2016.
[12] A. Choudhry, M. Arjomandi, and R. Kelso, "Methods to control dynamic stall for wind turbine applications," Renewable Energy, vol. 86, pp. 26-37, Feb 2016.
[13] A. Choudhry, R. Leknys, M. Arjomandi, and R. Kelso, "An insight into the dynamic stall lift characteristics," Experimental Thermal and Fluid Science, vol. 58, pp. 188-208, Oct 2014.
[14] J. Yen and N. A. Ahmed, "Enhancing vertical axis wind turbine by dynamic stall control using synthetic jets," Journal of Wind Engineering and Industrial Aerodynamics, vol. 114, pp. 12-17, Mar 2013.
[15] W. Xie, P. Zeng, and L. P. Lei, "A novel folding blade of wind turbine rotor for effective power control," Energy Conversion and Management, vol. 101, pp. 52-65, Sep 1 2015.
[16] FLUENT 6.3, User Guide, FLUENT Incorporated, 2006.
[17] ANSYS FLUENT, “ANSYS FLUENT 14.0 Theory Guide,”ANSYS Inc, 2011.
[18] Baliga, B. R. and Patankar, S. V., “A Control Volume Finite-element Method for Two-dimensional Fluid Flow and Heat Transfer”, Numerical Heat Transfer, Vol.6, 1983, PP. 245-261.
[19] Wilcox, D. C., "Multiscale Model for Turbulent Flows." AIAA Journal 26(11): 1311-1320., (1988).
[20] Menter, F. R., "Two-equation Eddy-viscosity Turbulence Models for Engineering Applications." AIAA Journal 32(8): 1598-1605., (1994).