| 研究生: |
廖家聖 Liao, Jia-Sheng |
|---|---|
| 論文名稱: |
運用離子交換法製作多模光干涉架構下的Mach-Zehnder波導干涉儀於玻璃基板上 Multimode Interference (MMI) Based Mach-Zehnder Waveguide Interferometer Fabricated in Glass by Ion-Exchange Method |
| 指導教授: |
莊文魁
Chuang, Wen-kuei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | Mach-Zehnder 波導干涉儀 、多模光干涉 、離子交換法 |
| 外文關鍵詞: | Mach-Zehnder, MMI, ion exchange |
| 相關次數: | 點閱:122 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文採用離子交換法成功的去製作出可靠度高且造價低廉的光波導元件。而且我們使用的是玻璃基版N-BK7,之後再搭配光學量測來了解其特性與效能。
首先是製作出掩埋式通道波導,經由特殊載具及電場的輔助下,成功的將波導掩埋進玻璃表面接近10μm。而接著是成功製作出特殊結構的1x2 MMI,製作的方式是用熔融鹽濕式離子交換法,溶液配方為AgNO3 : NaNO3= 0.02:1。而此種特殊結構稱為cascade,相較於傳統結構original來說,其最大特點便是能夠在相同的輸出間距下,縮短整體元件的長度,最多可達50%,在現在講求積體化的時代是非常引人興趣的。
最終用此兩種1x2 MMI結構去製作MMI-MZI的調變器,運用此種結構擁有較短的元件長度,製作相同總長的元件下,cascade會有較長的調變區,在評估調變器效能式子Vπ×L下,cascade會有較低的調變電壓輸出,可以達到低消耗功率的目的。而之後我們有做光場與光功率的量測,由光場圖發現元件皆有衰減到光完全消失的情況,證明確實有調變效果。而在電性的分析上由公式推導出施加電壓相對電極阻值即電極溫度的關係式,可以了解施加電壓後電極所消耗的功率。在比較後可發現cascade比original特性更好,證明此種結構擁有更好的效能。而光功率的量測則發現功率經調變後都有下降到0的趨勢,這是我們所預期的。而我們製作的元件幾乎都可達到20dB的衰減幅度,其中最多可達31dB,故可以用來當作不錯的衰減器。
此種運用MMI結構製作的MZI調變器取代傳統的Y型調變器除了可以縮小元件體積來符合積體化外,還有重要原因便是MMI的製程上跟光學表現上的特性優於Y型分光器,最主要是沒有彎曲損耗,一般預料整體損耗會比Y型分光器製作的調變器要低。之後我們將繼續改善此元件的特性,希望可以達到真正低損耗、高效能的調變器。
In this master thesis, we have successfully fabricated reproducible and low-cost optical waveguide devices in glass such as N-BK7 by ion-exchange technique. The concept of implementing buried waveguides as components of integrated optics devices is first pursued with a goal of minimizing the propagation loss. The entire process is assisted by applying the electric field to bury the waveguides 10μm into the glass substrate. Afterward, novel 1x2 MMI devices by cascading a multiple number of MMI stages are designed and built via the molten salt ion-exchange method. The composition of the melt solution is made up of AgNO3 and NaNO3 with the ratio of 0.02 to 1. One of the most important reasons to adopt the cascade structure is that the overall MMI length (L) of cascade structure could be made shorter compared to the conventional 1 x 2 MMI, with an extent of 50% shorter.
Finally, two different designs of MMI waveguides are incorporated as components of the MMI-based Mach-Zehnder interferometer (MZI) modulators. Our measurement result will show that the MMI-MZI modulators with cascaded MMI stages do have lower modulation voltages or Vπ×L; one of key figures of merit demonstrating the fabricated devices with comparably lower power consumption. Furthermore, the cascaded structure also has better electric characteristic compared to that of the original structure. Based on the measurement results obtained, the normalized optical power decays down to 0 once the Vπ is attained, which could be predicted beforehand by simulation. In addition, the original and cascaded MMI-MZI structures both deliver power attenuation close to 20dB. Among the devices studied, the highest attenuation could reach up to 31dB, which is highly beneficial for their functional role as variable attenuators.
ch1
[1] S.E. Miller, “Integrated optics: An introduction,” Bell Syst. Tech. J.,vol. 48, pp. 2059-2069, 1969.
[2] F. Kane and Robert R.Krchnavek,“Beazocyclobutene optical waveguide,”IEEE Photo.Tech. Lett., Vol.7,No.5,PP.535-537, 1995.
[3] Gregory H. Olsen, “InGaAsP laser diodes,” Opt. Eng., vol. 20, pp.440-445, 1981.
[4] R. H. Saul, “Recent advances in the performance and reliability of InGaAsP LED’s for lightwave communication systems,” IEEE Trans. Electron Dev., vol. ED-30, pp.285-295, 1982.
[5] Prentice Hall, and P. Kaiser, “Vibrational mode assignments,” Appl. Phys. Lett., vol.23, pp.45, 1973. Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996
[6] Tetsuo Miya, Toshihito Hosaka, Yukio Terunuma and Tadashi Miyashita, “ Ultra low loss single-mode fibers at 1.55 μm,” Rev. Electrical Commun. Lab., vol. 27, pp.497-506, 1979.
[7] I. Toshiharu, Optical Fiber Communication Conference and Exhibit (OFC’04), Paper ThE2, 2004.
[8] C.W. Pitt, “Sputtered glass optical waveguides,” Electron. Lett., vol. 9, pp.401-403, 1973.
[9] G. H. Chartier, P. Jaussaud, A. D. de Oliveira, and O. Parriaux, “ Optical waveguides fabricated by electric-field controlled ion exchange in glass,” Electron. Lett., vol. 14, pp.132-134, 1978.
ch2
[1] Mool C. Gupta and John Ballato, “ The handbook of photonics 2nd ed.,” CRC/Taylor & Francis, 2007.
[2] R.H. Doremus, “ Exchange and Diffusion of Ions in Glass,” J.Phys.Chem., vol. 68, pp.2212-2218, 1964.
[3] R. V. Ramaswamy and R. Srivastava, “ Ion-exchanged glass waveguides: A review,” J. Lightwave Technol., vol. 6, pp.984-1002, 1988.
[4] C.A. Millar and R.H. Hutchins, “ Manufacturing tolerances for silver-sodium ion-exchange planar optical waveguides,” J.Phys. D, Appl Phys., vol. 11, pp.1567-1576, 1978.
[5] R. Doremus, “ Glass Science,” pp 310-315, Wiley & Sons, New York, 1973.
[6] Akira Himeno, Kuniharu Kato and Tetsuo Miya, “ Silica-based planar lightwave circuits,” IEEE J. Selected Topics Quant. Electron., vol. 4, pp.913-924, 1998.
[7] Ming Zhou, “ Low-loss polymeric materials for passive waveguide components in fiber optical telecommunication,” Opt. Eng., vol. 41, pp.1631-1643, 2002.
[8] Louay Eldada, “ Polymer integrated optics: Promise vs. practicality,” Proc. SPIE, vol. 4642, pp.11-22, 2002.
[9] Sean M. Garner and Steve Caracci, “ Variable optical attenuator for large-scale integration,” IEEE Photon. Technol. Lett., vol. 14, pp.1560-1562, 2002.
[10] Hyun-Chae Song, et al., “ Flexible low-voltage electro-optic polymer modulators,” Appl. Phys. Lett., vol. 82, pp.4432-4434, 2003.
[11] Hong Ma, Alex K. Y. Jen, and Larry R. Dalton, “ Polymer-based optical waveguides: Materials, processing, and devices,” Advanced Materials, vol. 14, pp.1339-1365, 2002.
[12] J. Albert, “ Ion exchange from salt melts,” in Introduction to Glass Integrated Optics, S. I. Najafi, ed., pp.7-38, Artech House, Boston, 1992.
[13] S.I. Najafi, T. Touam, R. Sara, M.P. Andrews and M.A. Fardad, “ Sol-gel glass waveguide and grating on silicon,” J. Lightwave Technol., vol. 16 , pp.1640-1646, 1998.
[14] Y. Okamura, S. Yoshinaka and S. Yamamoto, “ Measuring mode propagation losses of integrated optical waveguides - A simple method,” Appl. Optics., vol. 22, pp.3892, 1983.
[15] K. Shuto, K. Hattori, T. Kitagawa, Y. Ohmori and M. Horiguchi, “ Erbium-doped phosphosilicate glass waveguide amplifier fabricated by PECVD,” Elect. Lett., vol. 29 , pp.139-141, 1993.
[16] Feng Chen, Ke-Ming Wang and Xue-Lin Wang, “ Monomode, nonleaky planar waveguides in a Nd3+- doped silicate glass produced by silicon ion implantation at low doses ,” J. Appl. Phys., vol. 92, pp.2959, 2002.
[17] Advanced Optics, Schott North America, Inc. “Optical Glass Data Sheets,” 2008(http: //www.us.schott.com).
[18] Borofloat Division, Schott AG, Mainz, Germany. ”Borofloat Data Sheet,” (http: //www. schott.com/borofloat).
[19] D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P.Peskin, W.-C. L. S. N. Houde-Walter, and J. S. Hayden, “ Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids., vol. 263&264, pp.369-381, 2000.
[20] P. C. Becker, N. A. Olsson, and J. R. Simpson, “ Erbium-Doped Fiber amplifiers: Fundamentals and Technology,” Academic Press, San Diego, USA, 1999.
[21] T. Izawa and H. Nakagome, “ Optical waveguide formed by electrically induced migration of ions in glass plates,” Appl. Phys. Lett., vol. 21, pp.584-586, 1972.
[22] J.L. Jackel, “ Glass waveguides made using low melting point nitrate mixtures,” Appl. Opt. vol. 27, pp.472, 1988.
[23] J. E. Broquin, “ Ion-exchanged integrated devices,” Proc. SPIE, vol. 4277, pp.105, 2001.
[24] R. W. Laity, “ Fused salt concentration cells with transference. Activity coefficients in the system silver nitrate-sodium nitrate,” J. Am. Chem. Soc., vol. 79, pp.1849-1851, 1957.
[25] G. Steward and P.J.R. Laybourn, “ Fabrication of ion-exchanged optical waveguides from dilute silver nitrate melts,” IEEE J. Quantum Electr., vol. QE-14, pp.930-934, 1978.
[26] C. A. Millar and R. H. Hutchins, ” Manufacturing tolerances for silver sodium ion-exchanged planar optical waveguides,” J. Phys. D., vol. 11, pp.1567, 1978.
[27] Katherine Forrest, Stephen J. Pagano, and Walter Viehmann, “ Channel waveguides in glass via silver-sodium field-assisted ion exchange,” J. Lightwave Technol., vol. LT-4, pp140-150, 1986.
[28] C. Gnther and D. Jestel, “ Buried waveguides produced by a one-step field-assisted Ag+ ion-exchange in glass,” Proc. SPIE, vol. 993, 1988.
[29] S. Honkanen and A. Tervonen, “ Experimental analysis of Ag+-Na+ exchange in glass with Ag film ion sources for planar optical waveguide fabrication,” J. Appl. Phys., vol. 63, pp.634-639, 1988.
[30] A. Belkhir, “ A comparative study of silver diffusion in a glass substrate for optical waveguide applications,” IEEE J. Quantum Electron., vol. 35, pp.306-311, 1999.
[31] S. Iraj Najafi, Paul G. Suchoski, Jr., and Ramu V. Ramaswamy, “ Silver film-diffused glass waveguides: diffusion process and optical properties,” IEEE J. Quantum Electron., vol. QE-22, pp.2213-2218, 1986.
[32] A. Tervonen, S. Honkanen, and M. Leppihalme, “ Control of ion-exchanged waveguide profiles with Ag thin-film sources,” J. Appl. Phys., vol. 62, pp.759-763, 1987.
ch3
[1] O. Bryngdahl, “ Image formation using self-imaging techniques” J. Opt. Soc. Am., vol. 63, pp.416-419, 1973.
[2] R. Uleich and G. Ankele,“ Self-imaging in homogenoous planar optical waveguides,” Appl. Phys.Lett., vol. 27, pp.337-339, 1975.
[3] Lucas B. Soldano and Eric C. M. Pennings, “ Optical multi-mode interference devices based on self-imaging: principles and applications,” J.Lightwave Technol., vol. 13, pp.615-627, 1995.
[4] Ricky W. Chuang, Zhen-Liang Liao, and Chih-Kai Chang,” Integrated optical beam splitters employing symmetric mode mixing in SiO2/SiON/SiO2 multimode interference waveguides,” Japan. J. Appl. Phys., vol. 46, pp.2440-2444, 2007.
[5] D. C. Chang and E. F. Kuester, “ A hybrid method for paraxial beam propagation in multimode optical waveguides,” Trans. Microwave Theory Tech., vol. MTT-29, pp.923-933, 1981.
[6] R. Uleich, “ Light-propagation and imaging in planar optical waveguides,” Nouv. Rev. Optique., vol. 6, pp.253-262, 1975.
[7] M. Bachmann, P.A.Besse, and H. Melchior, “ General self-imaging properties in N×N multi-mode interference couplers including phase relations,” Appl. Opt., vol. 33, pp.3905-3911, 1994.
[8] M.P. Earnshaw, J.B. Soole, M. Cappuzzo, L. Gomez, E. Laskowski, and A. Paunescu, “ Compact, low-loss 4 × 4 optical switch matrix using multimode interference” Electron. Lett., vol. 37, pp.115-116, 2001.
[9] R. M. Jenkins, R.W. J. Deveraux, and J. M. Heaton, “Waveguide beam splitters and recombiners based on multimode propagation phenomena,” Opt. Lett., vol. 17, pp.991-993, 1992.
[10] J. M. Heaton, R. M. Jenkins, D. R. Wight, J. T. Parker, “A novel waveguide Mach-Zehnder interferometer based on multimode interference phenomena,” Optics Commun., vol. 109, pp.410-424, 1994.
[11] R. Ulrich, “ An investivation of the model coupling of simple branching semiconductor ring lasers,” Nouv. Rev., vol. 6, pp.253, 1975.
[12] Wei chih-chang, “The study of various taper structures based on multimode interference” Department of Electrical Engineering, Tamkang University, Taipei, Taiwan, 2002.
ch4
[1] S. I. Najafi, “Introduction to Glass Integrated Optics,” Artech House, Boston, 1992.
[2] R. G. Hunsperger, “Integrated Optics: Theory and Technology,” Springer-Verlag, Berlin, 2002.
[3] T. Tamir, “Integrated Optics,” Springer-Verlag, Berlin, 1982.
[4] 倪勢凱, “在Y-cut鈮酸鋰參雜氧化鎂晶體上質子交換波導之尋常與非尋常折射係數分佈之量測與分析,”國立清華大學電機所碩士論文, 2000.
[5] A. Gedeon., “ Comparison between rigorous theory and WKB- analysis of modes in graded-index waveguides,” Optics Commun., vol. 12, pp. 329-332, 1974.
[6] Najafi S.I., R. Srivastava and R.V. Ramaswamy, “ Wavelength- dependent propagation characteristics of Ag+-Na+ exchanged planar glass waveguides,” Appl. Opt., vol. 25, pp. 1840-1843, 1986.
[7] J.M. White and P.F. Heidrich, “Optical waveguide refractive index profiles determined from measurement of mode indices: a simple analysis,” Appl. Opt., vol. 15, pp. 151-155, 1976.
[8] P. Hertel and H. P. Menzler, “Improved inverse WKB procedure to reconstruct refractive index profiles of dielectric planar waveguides,” Appl. Phys., vol. B, pp. 75-80, 1987.
[9] K.S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol., vol. LT-3, pp. 385-391, 1985.
ch5
[1] Graham T. Reed, Andrew P. Knights,“Silicon Photonics,”Wiley, 2004.
[2] Jizuo Zou, Feng Zhao, Ray T. Chen, “Mode-Matched Ion-Exchanged Glass-Waveguide Bridge for High-Performance Dense Wavelength Division Multiplexer,”IEEE J. Lightwave Technol, vol. 23, PP.2926-2933, 2005.
[3] Daniel J. Blumenthal, Larry A. Coldren, “Multimode Interference-Based Two-Stage 1x2 Light Splitter for Compact Photonic Integrated Circuits,” IEEE Photon. Technol. Lett., VOL. 15, pp.706-708, 2003.
[4] K.S. Chiang, “ Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol., vol. LT-3, pp. 385-391, 1985.
ch6
[1] Daniel J. Blumenthal, Larry A. Coldren, “Multimode Interference-Based Two-Stage 1x2 Light Splitter for Compact Photonic Integrated Circuits,” IEEE Photon. Technol. Lett., vol. 15, pp.706-708, 2003.
[2] S.O. Kasap, “Optoelectronics and Photonics,” Pearson, 2006.
[3] D. Khalil, H. Maaty, A. Bashir, and B. Saadany, “The effect of shutter thickness on optomechanical variable optical attenuators”, Microwave and optical technology letters, vol. 36 (2), pp.110-112, 2003.
[4] Soldano, L.B., and Pennings, E.C.M.: ‘Optical multi-mode interference devices based on self-imaging: principles and applications’, J. Lightwave Technol., vol.13, pp.615-627, 1995
ch7
[1] T. Izawa and H. Nakagome, “Optical waveguide formed by electrically induced migration of ions in glass plates, ” Appl. Phys. Lett., vol. 21, pp. 584, 1972.
[2] G. Stewart and P. J. R. Laybourn, “Fabrication of ion-exchanged optical waveguides form dilute silver nitrate melts, ” IEEE J. Quantum Electron., vol. QE-14, pp. 930-934, 1972.
[3] R.W. Chuang and C.C. Lee, “Low-loss deep glass waveguides produced with dry silver electromigration process, ” IEEE J. Lightwave Technol., vol. 20, pp. 1590-1597, 2002.
[4] Chin C. Lee and Ricky W. Chuang, “ A dry electromigration process for fabricating deep optical channel waveguides on glass and their characterization, ” Mater. Sci. Eng., vol. B, pp. 40-48, 2004.
[5] Zhen-Liang Liao, Ricky W. Chuang, Tao-Yuan Lin and Min-Hang Weng, “Optical glass-based channel/rib waveguides and multimode interference (MMI) power splitters produced with dry silver ion-exchange electromigration process,” Symposium on Nano Device Technology (SNDT), 2007. (2007奈米元件技術研討會)
[6] Ricky W. Chuang, Zhen-Liang Liao and Tao-Yuan Lin, “A dry silver electromigration process for fabricating integrated multimode interference optical beam splitters on n-BK7 substrates,” 5th Workshop on Fibres and Optical Passive Components (IEEE/LEOS WFOPC’07), paper no.THP-24, Taipei, Taiwan, 2007.
[7] Oliver Geschke, Henning Klank, Pieter Telleman,“Microsystem Engineering of Lab-on-a-Chip Devices,”Wiley-Vch, 2003.
[8] D. Khalil, H. Maaty, A. Bashir, and B. Saadany, “The effect of shutter thickness on optomechanical variable optical attenuators”, Microwave and optical technology letters, vol. 36 (2), pp.110-112, 2003.