簡易檢索 / 詳目顯示

研究生: 林永倫
Lin, Yung-Lun
論文名稱: 應用DOE方法於氧化銦錫薄膜(ITO)材料蝕刻液之開發與預測
The application of DOE methodology in the development and prediction of ITO etchant
指導教授: 謝中奇
Hsieh, Chung-Chi
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系碩士在職專班
Department of Industrial and Information Management (on the job class)
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 70
中文關鍵詞: 氧化銦錫蝕刻液反應曲面實驗設計
外文關鍵詞: Indium-tin oxide (ITO), Etchant, Response surface methodology, Design of experiments
相關次數: 點閱:105下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著顯示器尺寸愈來愈大與消費者對於觸控面板的反應速度要求,這些相關產品
    結構中所用到之導電材料,其要求慢慢走向低電阻高電流之方向,因此產生不少相關
    的製程問題。本文所選定之目標物氧化銦錫 (Indium-tin oxide, ITO ) 導電層亦是如此,
    其為了達到低電阻高電流的目標必須增加導電層厚度至>850Å,使得傳統蝕刻液無法
    有效進行蝕刻或有其缺點。所以本研究冀望應用實驗設計方法在統計學的基礎上,使
    其快速地開發出非傳統混酸型ITO 蝕刻液,並建立此配方其蝕刻率(Etch rate )與傾斜
    角度(Taper angle)之預測模型,讓後續此配方使用者能利用預測迴歸模型,根據客戶
    需求快速地得到相對應的濃度配比。因此研究流程一開始先以全因子實驗設計法(full
    factorial design),從四個可能因子中進行關鍵因子篩選,經篩選後選擇硝酸(HNO3)與
    MS-1 為混酸型ITO 蝕刻液組成之必須化學品,接下來利用全因子實驗法加入中心點
    進行實驗,檢視蝕刻率(Etch rate )與傾斜角度(Taper angle)於設定濃度範圍內模型是否
    具有曲率(Curvature),實驗結果顯示蝕刻率之曲率不顯著而傾斜角度之曲率呈現為顯
    著。曲率顯著之傾斜角度再透過使用反應曲面法(Response surface methodology)來建
    立一個最適化之預測迴歸模型,其後將先前所得到的蝕刻率與傾斜角度之預測迴歸模
    型,依亂數以25 組不同硝酸(HNO3)與MS-1 濃度進行實驗,得到蝕刻率預測準確率
    為96.71%,傾斜角度則為98.69%。最後再隨機決定一組濃度進行實驗,各別收集30
    筆蝕刻率與傾斜角度之資料,用來進行操作偏差度驗證,分別求得蝕刻率與傾斜角度
    其標準差(Standard Deviation)為0.073 與0.469;變異係數分別為0.69%與0.91%僅差
    0.22%,顯示其實驗手法具備一定的穩定性與模型精準度。

    With the increasing size of displays and the consumers' demand for response time of touch panels, the requirements for the conductive materials used in the structure of these products are slowly moving toward the direction of low resistance and high current, thus creating many process problems. This is also the case for the indium-tin oxide (ITO) conducting layer, which is the focus of this research. In order to achieve the goal of low resistance and high current, the thickness of the conducting layer must be increased to >850Å, which makes the conventional etchant unable to etch effectively or has its shortcomings.
    Therefore, this study aims to apply the experimental design method on the
    basis of statistics to swiftly develop non-traditional mixed-acid ITO etchant and
    establish the prediction model of etch rate and taper angle for this formulation,
    so that the subsequent users of this formulation can use the prediction model to
    quickly obtain the corresponding concentration ratio based on the customers'
    demands. Therefore, at the beginning of the research process, the full factorial
    design is employed to identify the key factors from the four possible factors.
    After the screening is completed, nitric acid (HNO3) and MS-1 are selected as
    the essential chemicals for the composition of the mixed acid ITO etchant.
    Then, the full factorial design (FFD) is used to add the center point into the
    experiment in order to check whether there is curvature for the etch rate and
    taper angle in the model between the set concentration range. The experimental
    results show that the curvature of the etch rate is not significant while the taper angle is significant. For the dependent variables with significant curvature, an optimized predictive regression model is established by using therespond surface methodology, and then the previously obtained predictive regression model of etch rate and taper angle is tested with 25 sets of different nitric acid (HNO3) and MS-1 concentrations. The prediction accuracy (Etch rate and Taper angle) is 96.71% and 98.69%. Finally, a set of concentration parameters is used to verify the variation in experiment process , and the standard deviation values of the etch rate and taper angle are calculated to be 0.073(Coefficient of variation: 0.69%) and 0.469(Coefficient of variation:0.91%), respectively, which confirmed that the experimental process and prediction accuracy.

    中文摘要......................................................................................................................................................i Extended Abstract.................................................................................................................................ii 致謝............................................................................................................................................................ x 目錄............................................................................................................................................................xi 表目錄......................................................................................................................................................xiv 圖目錄......................................................................................................................................................xvi 第一章 緒論...............................................................................................................................................1 1.1 研究背景.............................................................................................................................................3 1.2 研究動機.............................................................................................................................................4 1.3 研究目的.............................................................................................................................................5 1.4 研究範圍與限制................................................................................................................................6 1.5 研究流程.............................................................................................................................................6 第二章 文獻探討......................................................................................................................................8 2.1 ITO 材料介紹.................................................................................................................................... 8 2.2 蝕刻模式( Etching Mode)..........................................................................................................10 2.3 傳統ITO 濕式蝕刻液.....................................................................................................................12 2.4 實驗設計(Design of Experiments)..........................................................................................14 2.4.1 歷史發展與起源..........................................................................................................................14 2.4.2 全因子設計(Full Factorial Design).......................................................................................16 2.4.3 部分因子設計(Fractional Factorial Design)......................................................................18 2.4.4 田口方法 (Taguchi Methods)................................................................................................20 2.5 反應曲面法(Response surface methodology)...................................................................26 2.5.1 反應曲面基本原理......................................................................................................................29 2.5.2 反應曲面最佳化..........................................................................................................................30 2.6 實驗設計之應用.............................................................................................................................34 2.7 小結...................................................................................................................................................35 第三章 研究方法...................................................................................................................................36 3.1 研究架構..........................................................................................................................................36 3.2 實驗限制條件與反應變數定義...................................................................................................37 3.2.1 實驗設備與環境限制條件........................................................................................................37 3.2.2 反應變數(y)定義.........................................................................................................................37 3.3 關鍵因子篩選..................................................................................................................................40 3.4 曲率檢定與反應曲面法................................................................................................................41 3.5 預測迴歸模型準確率驗證............................................................................................................44 3.6 實驗手法偏差性驗證.....................................................................................................................44 3.7 小結...................................................................................................................................................45 第四章 實驗結果分析...........................................................................................................................46 4.1 尋找關鍵因子..................................................................................................................................46 4.1.1 實驗結果分析(ANOVA、常態機率與柏拉圖).....................................................................47 4.1.2 主效應分析(Main effects plot) .............................................................................................49 4.2 模型與曲率檢定..............................................................................................................................49 4.2.1 蝕刻率模型與曲率檢定.............................................................................................................49 4.2.2 傾斜角度模型與曲率檢定.........................................................................................................52 4.3 中央合成設計(CCD)......................................................................................................................54 4.3.1 中央合成設計ANOVA 分析 (傾斜角度)................................................................................54 4.3.2 中央合成設計實驗迴歸分析(傾斜角度)................................................................................55 4.3.3 等高線圖與反應曲面圖分析....................................................................................................56 4.4 迴歸方程式準確率驗證................................................................................................................58 4.4.1 準確率驗證分析..........................................................................................................................59 4.5 實驗手法偏差度確認.....................................................................................................................61 4.6 預測迴歸模型執行手法.................................................................................................................63 4.7 小結...................................................................................................................................................64 第五章 結論與未來方向......................................................................................................................65 5.1 結論...................................................................................................................................................65 5.2 未來方向與建議..............................................................................................................................66 參考文獻..................................................................................................................................................67 中文參考文獻.........................................................................................................................................67 英文參考文獻.........................................................................................................................................69

    中文文獻
    王曉微(2010)。以乾式蝕刻鏡面製作砷化銦量子點之邊射型雷射。國立交通大學電子研究所碩士論文。

    李輝煌(2011)。品質設計的原理與實務。臺北:高立圖書。

    李昀芸(2022)。實驗設計法分析酵素水解苦茶餅粕萃取蛋白究。中原大學工程學系碩士論文。

    余旻倩(2021)。利用實驗設計法優化VCSEL 發光頭平台蝕刻製程參數。成功大學工業與資訊管理學系碩士在職專班碩士論文。

    余曜宇(2021)。應用實驗設計進行半導體晶圓去膜製程最佳參數之研究。成功大學工業與資訊管理學系碩士在職專班碩士論文

    沈坤伸(2002)。非晶形ITO 薄膜濕式蝕刻之研究。臺灣大學化學工程學研究所碩士論文。

    林叡㴛(2018)。利用部分因子實驗方法探討經過表面改質的石墨氈電極提升厭氧MFC 產電性能與去除低濃度醱酵廢水中COD 與氨氮之研究。東海大學環境科學與工程學系碩士論文。

    陳正芳、顏婉雯、黃英傑(2006) 。田口品質工程應用於LCD 顯示器微影製程之品質改善。修平學報,13,頁1-20。

    黎正中、唐麗英(2015) 。實驗設計與分析。臺北:高立圖書。

    粘楣瀚(2019)。氧化銦材料與其應用氧化銦材料檢測與其應用。國立中山大學光電工程學系碩士論文。

    黃宇翔、呂政冀(2014)。LED 磊晶MOCVD 製程之最佳參數設定.管理研究學報,14(2),頁1-30。

    黃國棟、趙希德、張孟浩、張德宜、陳宜見、吳明宗、陳鈾征(2000)。反應曲面法在光阻開發的應用。工業材料雜誌,28(1),頁95-105。

    潘漢昌、蕭銘華、蘇健穎、蕭健男(2004) 。透明導電薄膜簡介。影像顯示器分析技術專題,26(1),頁46-55。

    蔣安國、蔣安仁、丁敬哲、鍾健平(2005)。以模擬技術和統計方法建構專案排程之靠度。管理科學研究,頁119-130。

    蔡依恬(2022)。應用田口實驗設計方法改善半導體晶圓研磨製程之研究。高雄科技大學工業工程與管理系碩士論文。

    蘇朝墩(2009)。六標準差。新北市:前程文化事業有限公司。

    英文文獻
    Berg, J. C. (1993). Wettability. Florida: CRC Press.

    Folcher, G., Cachet, H., Froment, M.,&Bruneaux, J. (1997). Anodic corrosion of indium tin oxide films induced by the electrochemical oxidation of chlorides. ThinSolid Films, 301(1-2), 242-248.

    Huang, C. A., Li, K. C., Tu , G. C.,&Wang, W. S. (2003). The electrochemical behavior of tin-doped indium oxide during reduction in 0.3M hydrochloric acid. Electrochimica Acta, 48, 3599-3605.

    Joyce, A. P., & Leung, S. S. (2013). Use of response surface methods and path of steepest ascent to optimize ligand-binding assay sensitivity. Journal of Immunological Methods, 392(1-2), 12-23.

    Kechagias, J. D., Aslani, K. E., Fountas, N. A., Vaxevanidis, N. M.,&Manolakos, D. E. (2020). A comparative investigation of Taguchi and full factorial design formachinability prediction in turning of a titanium alloy.Measurement, 151, 107213.

    Mojaddam, M., & Pullen, K. R. (2019). Optimization of a centrifugal compressor using the design of experiments technique. Applied Science, 9, 291.

    Mizuhashi, M. (1981). Electrical properties of post-oxidized In2O3:Sn films. Thin SolidFilms, 76(2), 97-106.

    Montgomery, D. C. (2012). Design and Analysis of Experiments(8th ed.). New jersey: John Wiley and Sons.

    Oh, S., Jung, H., Kim, Y.H., Kim, M., Yoo, E., Choi, Y. J., Yoon, T.S.,&Lee, H. H. (2013). Characterization of ITO etching by spontaneously evaporated fume of hydrogen chloride. Microelectronic Engineering, 103(1), 173-176.

    Su, S. H., Kong, H. J., Tseng, C. L., & Chen, G. Y. (2018). Wet etching mechanism and crystallization of indium-tin oxide layer for application in light- emitting diodes. Japanese Journal of Applied Physics, 57(1), AE05.

    Tsai, T. H., & Wu, Y. F. (2006). Wet etching mechanisms of ITO films in oxalic acid. Microelectronic Engineering, 83(3), 536-541.

    Van Boort, H. J. J., & Groth, R. (1968). Philips Technical Rev, 29(1), 17.

    Van der Pauw, L. J. (1958). A method of measuring the resistivity and hall effect on lamellae of arbitrary shape. Philips Technical Review, 20, 220–221.

    Van den Meerakker, J. E. A. M., Baarslag, P. C., & Scholten, M. (1995). On the echanism of ITO etching in halogen acids: the influence of oxidizing agents. Journal of Electrochemical Society, 142(7), 2321-2325.

    Lotito, V., & Zambelli, T. (2022). Playing with sizes and shapes of colloidal particles via dry etching methods. Advances in Colloid and Interface Science, 299, 102538.

    Zhou, Z. B., Cui, R. Q., Pang, Q. J., Wang, Y. D., Meng, F. Y., Sun, T. T., Ding, Z. M., &Yu, X. B. (2001). Preparation of indium tin oxide films and doped tin oxide films by an ultrasonic spray CVD process. Applied Surface Science, 172(3), 245-252.

    無法下載圖示 校內:2028-06-29公開
    校外:2028-06-29公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE