簡易檢索 / 詳目顯示

研究生: 葉承祐
Yeh, Cheng-Yu
論文名稱: 具有縱向鰭片之垂直式圓柱熱沉的自然對流熱傳特性研究
Study of Natural Convection Heat Transfer Characteristics for Vertical Cylinder Heat Sinks with Longitudinal Fins
指導教授: 王逸君
Wang, Yi-Chun
共同指導教授: 陳寒濤
Chen, Han-Taw
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 95
中文關鍵詞: 逆算法實驗方法垂直式圓柱熱沉上開口外殼煙囪式外殼自然對流經驗公式
外文關鍵詞: Inverse method, vertical cylinder heat sink, upward-opening, chimney, natural convection, correlation
相關次數: 點閱:107下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以有限差分法、最小平方法之逆算法搭配實驗溫度量測值來估算俱有縱向鰭片之垂直式圓柱熱沉在不同鰭片條件下,置放於上開口與上下開口之煙囪式外殼內之熱傳係數,由於鰭片之熱傳係數並非均勻分佈,故進行逆運算前,須將鰭片分割為多個小區域,而後把熱電偶安裝於各小區域上以量測不同條件下之量測位置溫度。並以商用軟體FLUENT搭配各種流動模式及適當格點數目模擬求取各量測點之溫度、熱傳係數,探討鰭片間之空氣溫度與流場速度分佈情形。比較各種流動模式所求得之數值結果,以探討其差異性,尋求與實驗溫度量測相近之結果。結果顯示,流動模式及網格點數目對數值結果之影響不容忽視。邊界條件方面,若將鰭片置於煙囪式邊界之盒子內,會因煙囪效應而增加自然對流效果。而圓柱熱沉的總散熱量會隨著鰭片數量的增加而提升,但鰭片上的平均熱傳係數卻因此而下降。此外鰭片長度亦對散熱有很大的影響,長度越長總散熱量越高、平均熱傳係數越低,並有逐漸趨緩的現象。為了驗證所得結果之可靠性及可用性,所求得熱傳係數之逆算結果與其他相關文獻之經驗式相比較,並與以改良修正,以獲得更加精準的經驗公式。

    In this study, inverse method and FLUENT are applied to determine the heat transfer and fluid flow characteristics of vertical cylinder heat sinks with longitudinal fins in the cabinet with two kinds of boundary conditions, upward-opening & chimney. Inverse method indicating finite difference method, and least square method is a simple but prompt way to predict the heat performance. In order to using inverse method, the temperature on the fin should be measured, so thermocouples are installed on the fin, which is apart into several small regions, and measure the temperature of these places Inverting the measured data to predict the average heat transfer coefficient, heat transfer rate, and also conjugate with FLUENT to choose the correct simulation setting, including flow model, and grid setting. Through the simulation, the correct temperature field, and flow field could be visible. The results show that the heat transfer coefficient decrease as the number of fins, or the height of fins increase. Besides, heat transfer performance improved significantly as the boundary condition of cabinet from upward-opening to chimney. This change makes more fluid participate in heat dissipation to exchange heat more efficiently. Finally, in order to verify the reliability of predicted results of this paper, the present study also compared with the empirical correlations of other relevant literature. Moreover, the empirical correlation is revised to become more accurate and wide-ranged.

    摘要 I 誌謝 VI 目錄 VII 表目錄 X 圖目錄 XII 符號說明 XVI 第1章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 3 1-3 研究目的 6 1-4 研究重點與論文架構 7 第2章 逆算法理論分析 9 2-1 簡介 9 2-2 建立數學模型 10 2-3 鰭片上之逆向方法 11 第3章 實驗方法 18 3-1 簡介 18 3-2 實驗設備 19 3-2-1 實驗試件 19 3-2-2 矩形外殼 20 3-2-3 溫度擷取系統 20 3-3 實驗步驟 21 第4章 數值方法 27 4-1 簡介 27 4-2 假設條件 28 4-3 流動模式 29 4-4 邊界條件 35 4-5 數值求解 36 4-5-1 流動模式的選定 37 4-5-2 網格測試 38 第5章 結果與討論 49 5-1 實驗結果與分析 49 5-1-1 鰭片數量與間距對所求結果之影響 50 5-1-2 鰭片長度對所求結果之影響 52 5-1-3 邊界條件對所求結果之影響 53 5-1-4 相關文獻之比較 54 5-2 流場與溫度之數值分析 57 5-2-1 鰭片數目對流場、溫度場之影響 58 5-2-2 鰭片長度對流場、溫度場之影響 59 5-2-3 上開口與煙囪式邊界對流場、溫度場之影響 60 第6章 綜合結論與未來展望 88 6-1 綜合結論 88 6-2 未來發展與建議 89 參考文獻 90

    [1] E.F. Schubert, J.K. Kim, Solid-state light sources getting smart, Science, Vol. 308, pp. 1274-1278, 2005.
    [2] W. Nakayama, Thermal management of electronic equipment: a review of technology and research topics, Appl. Mech. Rev., Vol. 39, pp. 1847–1868, 1986.
    [3] T.E. Schmidt, Heat transfer calculations for extended surfaces, Refri. Eng., pp. 351-357, 1949.
    [4] O.A. Saunders, Effect of pressure upon natural convection in air, Proc. R. Sot. A157, pp. 278-291, 1936.
    [5] A.J. Ede, Advances in free convection, in Advances in Heat Transfer, edited by J.P. Hartnett and T.F. Irvine, Jr., Vol. 4, pp. l-64. Academic Press, New York, 1967.
    [6] E. Griffiths and A.H. Davis, The transmission of heat by radiation and convection, DSIR Special Report No. 9, His Majesty’s Stationary Office, London, 1922.
    [7] S.W. Churchill, H.S. Chu, Correlating Equations for Laminar and Turbulent Free Convection from a Vertical Plate, Vol. 18, pp. 1323-1329, 1975.
    [8] W. Elenbass, Heat dissipation of parallel plates by free convection, Physica, Vol. 9, pp. 2-28, 1942.
    [9] E.M. Sparrow, A. Haji-Sheikh, T.S. Lundgren, The inverse problem in transient heat conduction, J. Appl. Mech., Vol. 31, pp. 369-375, 1964.
    [10] D.R. Haper, W.B. Brown, Mathematical equations for heat conduction in the fins of air cooled engines, N.A.C.A. Rept, pp. 158, 1922.
    [11] F.G. Hewitt, Heat Exchanger Design Handbook, Begell House, Inc., pp. 3340, 1998.
    [12] J.R. Bodoia, J.F. Osterle, The Development of free convection between heated vertical plates, ASME J. Heat Transfer, Vol. 84, pp. 40-43, 1962.
    [13] J. Deans, J. Neale, The use of effectiveness concepts to calculate the thermal resistance of parallel plate heat sinks, Heat Transfer Eng., Vol. 27, pp. 56-67, 2006.
    [14] A. de Lieto Vollaro, S. Grignaffini, F. Gugliermetti, Optimum design of vertical rectangular fin arrays, Int. J. Therm. Sci., Vol. 38, pp. 525-529, 1999.
    [15] S.H. Yu, K.S. Lee, S.J. Yook, Optimum design of a radial heat sink under natural convection, Int. J. Heat Mass Transf., Vol. 54, pp. 2499-2505, 2011.
    [16] A. Bar-Cohen, M. Iyengar, A.D. Kraus, Design of optimum plate-fin natural convective heat sinks, J. Electron. Packag., Vol, 125, pp. 208-216, 2003.
    [17] S. Yildiz, H. Yuncu, An experimental investigation on performance of annular fins on a horizontal cylinder in free convection heat transfer, Heat Mass Transfer., Vol. 40, pp. 239–251, 2004.
    [18] E. Hahne, D. Zhu, Natural convection heat transfer on finned tubes in air, Int. J. Heat Mass Transf., Vol. 37, pp. 59-63, 1994.
    [19] C. Prakash, S.V. Patankar, Combined free and forced convection in vertical tubes with radial internal fins, J. Heat Transf., Vol. 103, pp. 566, 1981.
    [20] R. Kumar, Three-dimensional natural convective flow in a vertical annulus with longitudinal fins, Int. J. Heat Mass Transf., Vol. 40, pp. 3323-3334, 1997.
    [21] X.H. Zhang, D.W. Liu, Optimum geometric arrangement of vertical rectangular fin arrays in natural convection, Energy Conversion. Management, Vol. 51, pp. 2449-2456, 2010.
    [22] D. Jang, S. Yook, K. Lee, Optimum design of a radial heat sink with a fin-height profile for high-power LED lighting applications, Appl. Energy, Vol. 116, pp. 260-268, 2014.
    [23] G.D. Raithby, E.H. Chui, A finite-Volume method for predicting a radiant heat transfer in enclosures with participating media, J. Heat Transf., Vol. 112, pp. 415-423, 1990.
    [24] S. Oktay, R.J. Hannemann, A. Bar-Cohen, High heat from a small package, Mech. Eng., Vol. 108, pp. 36–42, 1986.
    [25] M. Ahmadi, G. Mostafavi, M. Bahrami, Natural convection from rectangular interrupted fins, Int. J. Therm. Sci., Vol. 82, pp. 62-71, 2014.
    [26] R. Huang, W. Sheu, C. Wang, Orientation effect on natural convective performance of square pin fin heat sinks, Int. J. Heat Mass Transfer, Vol. 51, pp. 2368-2376, 2008.
    [27] I.K. Karathanassis, E. Papanicolaou, V. Belessiotis, G.C. Bergeles, Effect of secondary flows due to buoyancy and contraction on heat transfer in a twosection plate-fin heat sink, Int. J. Heat Mass Transf., Vol. 61, pp. 583-597, 2013.
    [28] M. Fujii, Enhancement of natural convection heat transfer from a vertical heated plate using inclined fins, Heat Transfer-Asian Res., Vol. 36, pp. 334-344, 2007.
    [29] E. Elshafei, Natural convection heat transfer from a heat sink with hollow/ perforated circular pin fins, Energy, Vol. 35, pp. 2870-2877, 2010.
    [30] G. Lorenzini, L.A. Oliveira Rocha, Constructal design of T–Y assembly of fins for an optimized heat removal, Int. J. Heat Mass Trans., Vol. 52, pp. 1458–1463, 2009.
    [31] K.T. Park, H.J. Kim, Experimental study of natural convection from vertical cylinders with branched fins, Experimental Thermal and Fluid Science, Vol. 54, pp. 29-37, 2014.
    [32] B.D. Kang, H.J. Kim, Nusselt number correlation for vertical tubes with inverted triangular fins under natural convection, Energies, Vol. 10, issue 8, 2017.
    [33] N.M. Alnajem, M.N. Özişik, A direct analytical approach for solving linear inverse heat conduction problems, ASME J. Heat Transfer, Vol 107, pp. 700-703, 1985.
    [34] J.V. Beck, Calculation of surface heat flux from an integral temperature history, ASME J. Heat Transfer, Vol. 62, pp. 46-51, 1962.
    [35] J.V. Beck, Surface heat flux determination using an integral method, Nuclear Engineering Design, Vol. 7, pp. 170-178, 1968.
    [36] J.V. Beck, B. Litkouhi, C.R. Stclair, Efficient sequential solution of nonlinear inverse heat-conduction problem, Numer. Heat Transfer, Vol. 5, pp. 275-286, 1982.
    [37] S. Sunil, J.R.N. Reddy, C.B. Sobhan, Natural convection heat transfer from a thin rectangular fin with a line source at the base – A finite difference solution, Int. J. Heat Mass Transfer, Vol. 31, pp. 127-135, 1996.
    [38] E. Velayati, M. Yaghoubi, Numerical study of convection heat transfer from an arrays of parallel bluff plates, Int. J. Heat Fluid Flow, Vol. 26, pp. 80-91, 2005.
    [39] H. T. Chen, Y. S. Lin, P. C. Chen, J. R. Chang, Numerical and experimental study of natural convection heat transfer characteristics for vertical plate fin and tube heat exchangers with various tube diameters, Int. J. Heat Mass Transfer, Vol. 100, pp. 320-331, 2016.
    [40] H. T. Chen, Y. J. Chiu, C. S. Liu, J. R. Chang, Numerical and experimental study of natural convection heat transfer characteristics for vertical annular finned tube heat exchanger, Int. J. Heat Mass Transfer, Vol. 109, pp. 378-392, 2017.
    [41] M. N. Özişik, H. R. B. Orlande, Inverse heat transfer: Fundamentals and applications, Taylor & Francis, New York, 2000.
    [42] O. M. Alifanov, Inverse heat transfer problem, Springer-Verlag, Berlin , 1994.
    [43] J. V. Beck, B. Blackwell, C. R. St. Clair, Inverse heat conduction: ill-posed problems, Wiley Interscience, New York, 1985.
    [44] A.N. Tikhonov, V.Y. Arsenin, Solution of Ill-posed Problems, V. H. Winston & Sons, Washington, DC, 1977.
    [45] V.S. Arpaci, Introduction to Heat Transfer, Prentice Hall, New Jersey, pp. 580, 1999.
    [46] A. Bejan, Heat Transfer, John Wiley & Sons, Inc., New York, pp. 53-62, 1993.
    [47] F. E.M. Saboya, E.M. Sparrow, Local and average heat transfer coefficients for one-row plate fin and tube heat exchanger configurations, ASME J. Heat Transfer, vol. 96, pp. 265-272, 1974.
    [48] H. T. Chen, J. C. Chou, Investigation of natural-convection heat transfer coefficient from the vertical, I.J.H.M.T., pp. 3034-3044, 1993.
    [49] 徐國軒,以逆算法估算自然對流下之垂直矩形鰭片上的熱傳特性,國立成功大學機械工程學系,碩士論文,2008。
    [50] 賴詩婷,矩行鰭片陣列於具開孔矩形外殼內之熱傳特性研究,國立成功大學機械工程學系,碩士論文,2012。
    [51] B.E. Launder, D. Spalding, The numerical computation of turbulent flows, Comp. Meth. Appl. Mech. Engng., vol. 3, pp. 269-289, 1974.
    [52] V. Yakhot, S.A. Orszag, S. Thangam, T.B. Gatski, C.G. Speziale, Development of turbulence models for shear flows by a double expansion technique, Physics of Fluids A, vol. 4, pp 1510-1520, 1992.
    [53] T. H. Shih, W. W. Liou, A. Shabbir, Z. Yang, J. Zhu, “A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows—Model Development and Validation”, Computers & Fluids, vol. 24(3), pp. 227-238, 1995.
    [54] Q. Shen, D. Sun, Natural convection heat transfer along vertical cylinder heat sinks with longitudinal fins, International Journal of Thermal Sciences, Vol. 100, pp. 457-464, 2016.
    [55] FLUENT Dynamic Software, FLUENT, Lehanon, NH, 2010

    下載圖示 校內:2023-07-01公開
    校外:2023-07-01公開
    QR CODE