| 研究生: |
楊迎晛 Yang, Ying-Hsien |
|---|---|
| 論文名稱: |
Rhodamine-CD化學感測器設計以及水中鈀離子螢光法以及比色法的感測應用研究 A Rhodamine-CD Based Fluorescent and Colorimetric Chemosensor for the Rapid Detection of Pd2+ Ions in Water |
| 指導教授: |
劉瑞祥
Liu, Jui-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | Rhodamine 、化學感測器 、包容錯合物 、環糊精 |
| 外文關鍵詞: | Rhodamine, chemosensor, inclusion complex, cyclodextrin |
| 相關次數: | 點閱:85 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要目的在於改善以Rhodamine為基底的化學感測器之水溶性,並且使其可完全溶於水相,如此一來在感測重金屬離子過程中,便不需要加入任何有機溶劑來幫助溶解,使得系統更加單純,這樣便可忽略添加之有機溶劑是否對分析物有影響等問題。
在提高水溶性而又不失原先的感測條件下,藉由導入β-環糊精,利用其桶狀結構且內部為疏水性質,與Rhodamine結構中末端的N,N-diethyl group以疏水-疏水作用力結合,利用非共價鍵的形式,藉由相互作用力而形成包容錯合物,藉此提高Rhodamine-based感測器於水相下之溶解度。
本研究合成一以Rhodamine B為基底之螢光感測分子RB,並與β-環糊精在水相下混合形成RB-CD包容錯合物,可有效感測Pd2+離子且具有良好的選擇性;與鈀離子螯合後會造成RB-CD結構中的spirolactam ring開環,共軛鍊段拉長,導致光學性質有急遽的改變,例如在560 nm可見光區之吸收度大幅提升,使得溶液呈現深紅色;而螢光部分則是在540 nm所放出的綠色有大幅的銳減,且放光位置則位移至600 nm轉變成微弱的橘紅色;此螢光淬熄的主因來自於開環後的RB-CD即便在低濃度條件下,大多還是以二聚體的形態存在於水相下,而二聚體的濃度又與量子產率成反比,又藉由Job’s plot 以及質譜儀可得到RB-CD與Pd2+的配位比例是2:1,這正好又加強了二聚體形成的機會,使得螢光強度隨著Pd2+濃度上升而逐漸下降。
將化合物RB溶在水:乙醇 (體積比1:1) 條件下,發現其感測Pd2+的效果與本研究RB-CD系統相同,由此可證明導入β-環糊精不僅可提高水溶性,且並不會影響化合物RB原有的感測性質。
To improve water solubility of Rhodamine-based sensor, water soluble inclusion complex RB-CD was synthesized by host-guest interaction between RB and β-cyclodextrin. RB-CD shows chemosensing property and good selectivity for palladium ions (Pd2+). Addition of Pd2+ into RB-CD changes optical properties from colorless to red due to spirolactam ring opening. Moreover, fluorescence self-quenching is triggered by dimeric product RB-Pd2+-RB. It was concluded that threading of β-cyclodextrin onto RB does not affect the sensing property but promote the solubility of RB in water.
1. Kirsch, J.; Siltanen, C.; Zhou, Q.; Revzin, A.; Simonian, A., Biosensor technology: recent advances in threat agent detection and medicine. Chemical Society reviews 2013, 42 (22), 8733-8768.
2. Martínez-Máñez, R.; Sancenón, F., Fluorogenic and chromogenic chemosensors and reagents for anions. Chemical reviews 2003, 103 (11), 4419-4476.
3. Valeur, B.; Leray, I., Design principles of fluorescent molecular sensors for cation recognition. Coordination Chemistry Reviews 2000, 205 (1), 3-40.
4. Kim, H. N.; Lee, M. H.; Kim, H. J.; Kim, J. S.; Yoon, J., A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. Chemical Society reviews 2008, 37 (8), 1465-72.
5. Chen, X.; Pradhan, T.; Wang, F.; Kim, J. S.; Yoon, J., Fluorescent Chemosensors Based on Spiroring-Opening of Xanthenes and Related Derivatives. Chemical reviews 2011, 112 (3), 1910-1956.
6. Valeur, B., Fluorescent Molecular Sensors of Ions and Molecules. In Molecular Fluorescence, Wiley-VCH Verlag GmbH: 2001; pp 273-350.
7. Ramette, R. W.; Sandell, E. B., Rhodamine B Equilibria. Journal of the American Chemical Society 1956, 78 (19), 4872-4878.
8. Noelting, E.; Dziewonski, K., Zur Kenntniss der Rhodamine Berichte der deutschen chemischen Gesellschaft Volume 38, Issue 3. Berichte der deutschen chemischen Gesellschaft 1905, 38 (3), 3516-3527.
9. Rao, T. P.; Ramakrishna, T. V., Spectrophotometric determination of zinc with thiocyanate and Rhodamine 6G. The Analyst 1980, 105 (1252), 674-678.
10. Maren, T. H., Colorimetric Microdetermination of Antimony with Rhodamine B. Analytical chemistry 1947, 19 (7), 487-491.
11. Garcia, I. L.; Cordoba, M. H.; Sanchez-Pedreno, C., Spectrophotometric determination of silver in lead and lead concentrates with thiocyanate and Rhodamine B. The Analyst 1984, 109 (12), 1573-1576.
12. Dujols, V.; Ford, F.; Czarnik, A. W., A Long-Wavelength Fluorescent Chemodosimeter Selective for Cu(II) Ion in Water. Journal of the American Chemical Society 1997, 119 (31), 7386-7387.
13. Kwon, J. Y.; Jang, Y. J.; Lee, Y. J.; Kim, K. M.; Seo, M. S.; Nam, W.; Yoon, J., A Highly Selective Fluorescent Chemosensor for Pb2+. Journal of the American Chemical Society 2005, 127 (28), 10107-10111.
14. Yang, Y. K.; Yook, K. J.; Tae, J., A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media. Journal of the American Chemical Society 2005, 127 (48), 16760-1.
15. Soh, J. H.; Swamy, K. M. K.; Kim, S. K.; Kim, S.; Lee, S.-H.; Yoon, J., Rhodamine urea derivatives as fluorescent chemosensors for Hg2+. Tetrahedron Letters 2007, 48 (34), 5966-5969.
16. Forster, T., Energiewanderung und Fluoreszenz. Naturwissenschaften 1946, 33 (6), 166-175.
17. Forster, T., 10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation. Discussions of the Faraday Society 1959, 27 (0), 7-17.
18. Zhang, X.; Xiao, Y.; Qian, X., A ratiometric fluorescent probe based on FRET for imaging Hg2+ ions in living cells. Angewandte Chemie 2008, 47 (42), 8025-9.
19. Jiao, G.-S.; Thoresen, L. H.; Burgess, K., Fluorescent, through-bond energy transfer cassettes for labeling multiple biological molecules in one experiment. Journal of the American Chemical Society 2003, 125 (48), 14668-14669.
20. Kim, T.; Castro, J.; Loudet, A.; Jiao, J.-S.; Hochstrasser, R.; Burgess, K.; Topp, M., Correlations of structure and rates of energy transfer for through-bond energy-transfer cassettes. The Journal of Physical Chemistry A 2006, 110 (1), 20-27.
21. Kumar, M.; Kumar, N.; Bhalla, V.; Singh, H.; Sharma, P. R.; Kaur, T., Naphthalimide appended rhodamine derivative: through bond energy transfer for sensing of Hg2+ ions. Organic letters 2011, 13 (6), 1422-5.
22. Bhalla, V.; Roopa; Kumar, M.; Sharma, P. R.; Kaur, T., New Fluorogenic Sensors for Hg2+ Ions: Through-Bond Energy Transfer from Pentaquinone to Rhodamine. Inorganic Chemistry 2012, 51 (4), 2150-2156.
23. Connors, K. A., The Stability of Cyclodextrin Complexes in Solution. Chemical reviews 1997, 97 (5), 1325-1358.
24. Del Valle, E. M. M., Cyclodextrins and their uses: a review. Process Biochemistry 2004, 39 (9), 1033-1046.
25. Kuad, P.; Miyawaki, A.; Takashima, Y.; Yamaguchi, H.; Harada, A., External Stimulus-Responsive Supramolecular Structures Formed by a Stilbene Cyclodextrin Dimer. Journal of the American Chemical Society 2007, 129 (42), 12630-12631.
26. Pu, L., Fluorescence of Organic Molecules in Chiral Recognition. Chemical reviews 2004, 104 (3), 1687-1716.
27. Maeda, K.; Mochizuki, H.; Osato, K.; Yashima, E., Stimuli-Responsive Helical Poly(phenylacetylene)s Bearing Cyclodextrin Pendants that Exhibit Enantioselective Gelation in Response to Chirality of a Chiral Amine and Hierarchical Super-Structured Helix Formation. Macromolecules 2011, 44 (9), 3217-3226.
28. Arbeloa, F. L.; Ojeda, P. R.; Arbeloa, I. L., Flourescence self-quenching of the molecular forms of Rhodamine B in aqueous and ethanolic solutions. Journal of Luminescence 1989, 44 (1–2), 105-112.
29. Setiawan, D.; Kazaryan, A.; Martoprawiro, M. A.; Filatov, M., A first principles study of fluorescence quenching in rhodamine B dimers: how can quenching occur in dimeric species? Physical Chemistry Chemical Physics 2010, 12 (37), 11238-11244.
30. 林詩芸,含芘基超分子凝膠的字組裝與螢光特性探討,國立成功大學化學工程研究所碩士論文 2013。