簡易檢索 / 詳目顯示

研究生: 李明峰
Lee, Ming-Feng
論文名稱: 以電紡絲法製備聚對苯二甲酸乙二酯/石墨烯纖維及其微結構鑑定
Preparation of PET/graphene fibers via electrospinning and microstructure characterization
指導教授: 王紀
Wang, Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 114
中文關鍵詞: 電紡絲聚對苯二甲酸乙二酯操作視窗石墨烯
外文關鍵詞: electrospinning, polyethylene terephthalate, processing windows, graphene
相關次數: 點閱:121下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以兩種方式製備PET電紡纖維,意即常溫橫向電紡PET/三氟乙酸 (TFA)溶液系統與高溫電紡PET/phenol溶液系統;常溫電紡探討改變不同操作參數,如電壓、流量 (Q)與溶液黏度 對cone、液柱直徑 (dj)及纖維形態(df)的影響,實際結果發現彼此間之關係式為dj~Q0.66、df~Q0.19;dj~ho0.06、df~ho0.78。高溫電紡探討油浴溫度 (T)、溶液濃度 (hw)對cone、液柱直徑及纖維直徑的影響,其關係為dj~T-0.31、df~T-0.66;dj~hw0.60、df~hw0.32。若要電紡相同直徑之纖維,使用phenol作為溶劑明顯比TFA所需要的濃度高出許多。

    以轉盤收集器收集具同一方向之順向纖維膜,後以WAXD與SAXS量測PET纖維中晶體的順向性,電紡所得纖維內結晶量很少,升溫回火至110oC時發生冷結晶,並於WAXD與SAXS皆觀測到晶體之順向性,在冷結晶後纖維中的晶體依然有很好的順向性。

    混掺石墨烯於PET/phenol溶液中進行電紡,可得到含有石墨烯之電紡纖維,由於石墨烯的橫向尺寸大於纖維直徑,所以纖維表面有到許多突起點判斷為石墨烯聚集,本實驗無法均勻分散石墨烯於纖維膜,使得石墨烯纖維膜的導電度低。

    PET electrospun fibers have been prepared by two methods. One used the room temperature electrospinning of PET/TFA solutions in horizontal mode , and the two used high temperature electrospinning of PET/phenol solutions in vertical mode. Our research is to study the effects of the applied voltage, flow rate (Q), solution viscosity (o) and oil temperature (T) on the Taylor cone, jet diameter (dj) and fiber diameter (df). In PET/TFA system, the scaling laws between Q, ho, dj and df are dj~Q0.66, df~Q0.19;dj~ho0.06, df~ho0.78. In PET/phenol system, the scaling laws between T, hw, dj and df are dj~T-0.31、df~T-0.66;dj~hw0.60、df~hw0.32. To obtain fibers with the same diameter, the concentration of PET/phenol solutions required for electrospinning should be much higher than that in PET/TFA system.

    The aligned PET fibers were collected by high speed disk rotator, and used to investigate the lamellar orientation. From WAXD and SAXS results, the as-spun fibers were nearly amorphous. After heating to 110oC, cold crystallization and the arcs which means crystal orientation were observed in WAXD and SAXS. After annealing, the crystal orientation was kept.

    PET/graphene electrospun fibers could be prepared by blending graphene into PET/phenol solutions. Our research is to know where the graphene in nanofibers was located. Because the graphene size was larger than fiber diameter, graphene was included in PET fibers but protuberated. In our results, the graphene could not be dispersed well in fibers, and the electric conductivity was low.

    摘要 I Abstract II 目錄 III 表目錄 VI 圖目錄 VII 圖目錄 VII 一、前言 1 二、簡介 2 2.1電紡絲模式 2 2.2電紡絲實驗之觀察 3 三、文獻回顧 6 3.1 聚對苯二甲酸乙二酯 (polyethylene terephthalate,PET) 6 3.2 PET電紡絲 7 3.3 電紡PET/奈米碳管纖維 8 3.4 石墨烯與高分子複合材料 8 四、實驗 25 4.1 實驗藥品 25 4.2 實驗儀器 25 4.3 電紡溶液製備 28 4.4 電紡絲實驗步驟 30 4.5 實驗步驟 31 五、結果與討論 40 5.1 溶液性質 40 5.2 常溫下電紡PET/TFA溶液之變因探討 40 5.3 高溫電紡PET2/phenol溶液之變因探討 44 5.4 電紡纖維之熱性質 46 5.5 電紡所得順向纖維與WAXD與SAXS測試 47 5.6 PET2/石墨烯電紡纖維製備 48 六、結論 98 七、參考文獻 99 八、附錄 102

    [1] K. S. Novoselov, et al. Science, 2004, 306, 666.
    [2] 林坤賢, “以電紡絲法製備PBO纖維.”國立成功大學碩士論文 (2005).
    [3] 林健樺, “以電紡絲法製備聚苯乙烯纖維膜.”國立成功大學碩士論文, (2004).
    [4] 洪崇豪, “以電紡絲法製備彈性SBS奈米纖維膜.” 國立成功大學碩士論文, (2004).
    [5] R. De, P. Daubeny, C. Bunn, C. J. Brown, “The crystal structure of polyethylene terephthalate.” Proceedings of the Royal Society A, 226, 531 (1954).
    [6] X. F. Lu and J. N. Hay, “Isothermal crystallization kinetics and melting behaviour of poly(ethylene terephthalate).” Polymer, 42, 9423 (2001).
    [7] H. W. Starkweather, J. R. Paul Zoller, and G. A. Jones, “The heat of fusion of poly(ethylene terephthalate).” Journal of Polymer Science: Polymer Physics Edition, 21, 295 (1983).
    [8] G Wu, J. D. Jiang, P. A..Tucker, J. A. Cucul, “Oriented noncrystalline structure in pet fibers prepared with threadline modification process.“ Journal of Polymer Science: Part B: Polymer Physics, 34, 2035 (1996).
    [9] N. S. Murthy, S. T. Correale, H. Minor, “Structure of the amorphous phase in crystallizable polymers: poly( ethylene terephthalate).” Macromolecules, 24, 1185 (1991).
    [10] Z. G. Wang, B. S. Hsiao, B. X. Fu, L. Liu, F. Yeh, B. B. Sauer, H. Chang, J. M. Schultz, “Correct determination of crystal lamellar thickness in semicrystalline poly(ethylene terephthalate) by small-angle X-ray scattering.” Polymer, 41, 1791 (2000).
    [11] A. M. Kenwright, S. K. Peace, R. W. Richards, A. Bunn, W. A. MacDonald, “End group modification in poly(ethylene terephthalate).” Polymer, 40, 2035 (1999).
    [12] B. Veleirinho, M. F. Rei, J. A. Lopes-DA-Silva, “Solvent and concentration effects on the properties of electrospun poly(ethylene terephthalate) nanofiber mats.” Journal of Polymer Science: Part B: Polymer Physics, 46, 460 (2008).
    [13] K. W. Kim, K. H. Lee, M. S. Khi, Y. S. Ho, H. Y. Kim, “The effect of molecular weight and the linear velocity of drum surface on the properties of electrospun poly(ethylene terephthalate) nonwovens.” Fibers and Polymers, 5, 122 (2004).
    [14] B. W. Ahn, Y. S. Chi, T. J. Kang, “ Preparation and characterization of multi-walled carbon nanotube/poly(ethylene terephthalate) nanoweb.” Journal of Applied Polymer Science, 100, 4055 (2008).
    [15] S. Mazinani, A. Ajji, C. Dubois, “Fundamental study of crystallization, orientation, and electrical conductivity of electrospun pet/carbon nanotube nanofibers.” Journal of Polymer Science: Part B: Polymer Physics, 48, 2052 (2010).
    [16] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science, 306, 666 (2004).
    [17] J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, Y. Chen, “Electromagnetic interference shielding of graphene/epoxy composites.” Carbon, 47, 922 (2009).
    [18] H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, “Graphene oxide doped polyaniline for supercapacitors.” Electrochemistry Communications, 11, 1158 (2009).
    [19] J. Yan, T. Wei, B. Shao, Z. Fan, W. Qian, M. Zhang, F. Wei, “ Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance.” Carbon, 48, 487 (2010).
    [20] X. Geng, L. Niu, Z. Xing, R. Song, G. Liu, M. Sun, G. Cheng, H. Zhong, Z. Liu, Z. Zhang, L. Sun, H. Xu, L. Lu and L. Liu, “ Aqueous-processable noncovalent chemically converted graphene-quantum dot composites for flexible and transparent optoelectronic films.” Advanced Materials, 22, 638 (2010).
    [21] W. Hong, Y. Xu, G. Lu, C. Li, G. Shi, “Transparent graphene/PEDOT -PSS composite films as counter electrodes of dye-sensitized solar cells.“ Electrochemistry Communications, 10, 1555 (2008).
    [22] S. D. McCullen, D. R. Stevens, W. A. Roberts, S. S. Ojha, L. I. Clarke and R. E. Gorga, “ Morphological, electrical, and mechanical characterization of electrospun nanofiber mats containing multiwalled carbon nanotubes .” Macromolecules, 40, 997 (2007).
    [23] H. B. Zhang, W. G. Zheng, Q. Yan, Y. Yang, J. W. Wang, Z. H. Lu, G. Y. Ji, Z. Z. Yu, “Electrically conductive polyethylene terephthalate/ graphene nanocomposites prepared by melt compounding.” Polymer, 51, 1191 (2010).
    [24] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, “Graphene-based composite materials.” Nature Letters, 442, 282 (2006).
    [25] W. R. Moore and D. Sanderson, "Viscosities of dilute solutions of polyethylene terephthalate.” Polymer, 9, 153 (1968).

    下載圖示 校內:2012-08-23公開
    校外:2013-08-23公開
    QR CODE