| 研究生: |
韓裕源 Hang, Joo-Guan |
|---|---|
| 論文名稱: |
煉焦爐內積碳燒除之數值模擬 Simulation of Burning Off Carbon Deposition in Coke Oven |
| 指導教授: |
張克勤
Chang, Keh-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 煉焦爐 、積碳燃燒 、燃燒模擬 、數值計算 |
| 外文關鍵詞: | Coke Oven, Burning Off Carbon Deposits, Carbon Combustion, Computational Fluid Dynamics |
| 相關次數: | 點閱:79 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在工業煉焦過程中,積碳常常附著在煉焦爐之內壁。長時間煉焦作業後,積碳囤積之厚度將造成煉焦爐內推焦作業系統之損壞。文獻上知道透過管子導入空氣之方式燒除壁面之積碳亦是一種高效率之方法。本研究將透過流體力學計算,對煉焦爐作出數值模擬。透過數值計算方法可提供與分析煉焦爐內實際狀況,並探討透過導入空氣式燒除積碳之可行性評估。此物理問題為三維、暫態、當中涉及紊流與化學反應之流場,並進行四個不同燒除作業操作案例之模擬分析,其中三個為不同之噴流流量設定和一個不同之設計噴流位置之案例。結果顯示,於煉焦室內注入空氣確可達到燒除壁面積碳之效果,且以噴流流量較大之案例,其燒除效果較佳。此外,在除碳過程中打開煉焦爐之加料口可由大氣中提供更多之氧氣參與燃燒,並提高燒除積碳之效能。同時監控爐內壁面之溫度,以確保燒炭的過程不至於破壞其壁面。
Carbon Deposits are often occurred inside the industrial coke oven during coking process. Accumulation of carbon deposits may cause a big issue, which seriously influences the coking operation. The carbon is burning off by injecting fresh air through pipes into coke oven which is an efficient way practically operated in industries. The burning off carbon deposition in coke oven performed by Computational Fluid Dynamics (CFD) method has provided an evaluation of the feasibility study. A three dimensional, transient, turbulent reacting flow simulation has performed with three different injecting air flow rate and another kind of injecting configuration. The result shows that injection higher air flow rate would effectively reduce the carbon deposits. In the meantime, the opened charging holes would suck extra oxygen from atmosphere to participate in reactions. In term of coke oven operating limits, the wall temperatures are monitored to prevent over-heating of the adiabatic walls during burn-off process. It is demonstrated that the burn-off method by injecting fresh air is feasible to remove the carbon deposits in coke oven. Due to the number of computational nodes being as huge as about 5×10^7, a result at time of 8.3 s would require 3 months computation time in the present study.
[1] Patrick, J. and Barranco, R., “Carbon Deposits: Formation, Nature, and Characterisation”, COMA/CRF Meeting, United Kingdom, 2006.
[2] Krebs, V., Mareche, F., Furdin, G. and Dumay, D., “Contribution to the Study of Carbon Deposition in Coke Ovens”, Fuel, Vol. 73, No. 12, pp. 1904-1910, 1994.
[3] Hu, Z. J. and Huttinger, K. J., “Mechanisms of Carbon Deposition-a Kinetic Approach”, Carbon, Vol. 40, No. 4, pp. 624-628, 2002.
[4] Norinaga, K. and Huttinger, K. J., “Kinetics of Surface Reactions in Carbon Deposition from Light Hydrocarbons”, Carbon, Vol. 41, No. 8, pp. 1509-1514, 2003.
[5] Fang, Y. Z., Huang, P., Zhang, Z., Cao, Y. P. and Jin, M. L., “Analysis on the Growth Mechanism of Carbon Deposits in Coke Oven”, Clean Coal Technology, Vol. 17, No. 5, pp. 36-39, 2011. (In Chinese)
[6] Wang, Z. Z., Zhan, Z. F., Wang, W. D., Zhang, W. D., Zhang, X. Q. and Wang, H. S., “Analysis and Research on Coal Moisture Control Technology”, Applied Energy Technology, No. 3, pp. 5-9, 2014. (In Chinese)
[7] Furusawa, A., Nakagawa, T., Maeno, Y. and Komaki, I., “Influence of Coal Moisture Control on Carbon Deposition in the Coke Oven Chamber”, ISIJ International, Vol. 38, No. 12, pp. 1320-1325, 1998.
[8] Krebs, V., Furdin, G., Mareche, J. F. and Dumay, D., “Effects of Coal Moisture Content on Carbon Deposition in Coke Ovens”, Fuel, Vol. 75, No. 8, pp. 979-986, 1996.
[9] Nakagawa, T., Kudo, T., Kamada, Y., Suzuki, T., Suzuki, Y. and Komaki, I., “Control of Carbon Deposition in the Free Space of Coke Oven Chamber by Injecting Atomized Water”, ISIJ, Vol. 68, No. 7, pp. 386-392, 2002.
[10] Zymla, V. and Honnart, F., “Coke Oven Carbon Deposits Growth and Their Burning Off ”, ISIJ International, Vol. 47, No. 10, pp. 1422-1431. 2007.
[11] Lu, C. Z. and Cao, Y. P., “Study on Properties of Carbon Deposite in Coking Chamber and its Reaction Kinetics with Air”, Fuel & Chemical Processes, Vol. 41, No. 1, pp. 15-18. 2010.
[12] Turns, S. R., An Introduction of Combustion Concepts and Applications, 3rd Ed., McGraw Hill. 2012.
[13] Caram, H. S. and Amundson, N. R., “Diffusion and Reaction in a Stagnant Boundary Layer about a Carbon Particle”, Ind. Eng. Chem., Fundam., Vol. 16, No. 2, pp. 171-181. 1977.
[14] Adomeit, G., Hocks, W. and Henriksen, K., “Combustion of a Carbon Surface in a Stagnation Point Flow Field”, Combustion and Flame, Vol. 59, pp. 273-288. 1985.
[15] Yi, F., Fan, J., Ki, D., Lu, S., and Luo, K., “Three-dimensional Time-dependent Numerical Simulation of a Quiescent Carbon Combustion in Air”, J. Fuel., Vol. 90, pp. 1522-1528. 2012.
[16] Nikrityuk, P. A., Grabner, M., Kestel, P. and Meyer, B., “Numerical Study of the Influence of Heterogeneous Kinetics on the Carbon Consumption by Oxidation of a Single Coal Particle”, J. of Fuel, Vol. 114, pp. 88-98. 2013.
[17] Incropera, F. P., Dewitt, D. P., Bergman, T. L. and Lavine, A. S., Fundamentals of Heat and Mass Transfer, 6th edit., John Wiley and Sons. 2005.
[18] Fedorov, A. G. and Viskanta, R., “Turbulent Natural Convection Heat Transfer in an Asymmetrically Heated, Vertical Parallel-Plate Channel”, Int. J. Heat Mass Transfer, Vol. 40, No. 16, pp. 3849-3860. 1997.
[19] Tennekes, H. and Lumley, J. L., “A First Course in Turbulence”, The MIT Press. 1972.
[20] Hinze, J. O., “Turbulence”, McGraw-Hill. 2nd ed. 1975.
[21] Kou, K. K. and Acharya, R., Fundamentals of Turbulent and Multiphase Combustion, John Wiley & Sons, Inc. 2012.
[22] Wilcox, D. C., Turbulence Modeling For CFD, 3rd ed., DWC Industries, Inc. 2006.
[23] Spalding, D. B., “Mixing and Chemical Reaction in Steady Confined Turbulent Flames” Symposium (Int.) on Combustion, Vol. 13, No. 1, pp. 649-657, 1971.
[24] Magnussen, B. F. and Hjertager, B. H., “On Mathematical Modeling of Turbulent Combustion with Special Emphasis on Soot Formation and Combustion” Symposium (Int.) on Combustion, Vol. 16, pp. 719-729, 1977.
[25] Zhou. L. X., Combustion Theory and Chemical Fluid Dynamics, Science Press, Moscos. 1986.
[26] Shih, T. H., Liou, W. W., Shabbir, A., Yang, Z. and Zhu, J. , “A New k-Ɛ Eddy- Viscosity Model for High Reynolds Number Turbulent Flows – Model Development and Validation”, Computers Fluids. Vol. 23, pp. 227-238. 1995.
[27] McGee, H. A., Molecular Engineering, McGraw-Hill, New York. 1991.
[28] Kuo, K. K. Y., Principle of Combustion, John Wiley and Sons, New York. 1986.
[29] Cheng, P., “Two-Dimensional Radiating Gas Flow by a Moment Method.”, AIAA Journal, Vol. 2, pp. 1662-1664. 1964.
[30] Smith, T. F., Shen, Z. F., and Friedman, J. N., “Evaluation of Coefficients for the Weighted Sum of Gray Gases Model”, J. Heat Transfer. Vol. 104, pp. 602-608. 1982.
[31] Coppalle, A. and Vervisch, P., “The Total Emissivities of High-Temperature Flames”. Combustion and Flame, Vol. 49, pp. 101-108. 1983.
[32] Jongen, T., “Simulation and Modeling of Turbulent Incompressible Flows”, Phd Thesis. EPF Lausanne, Lausanne, Switzerland. 1995.
[33] Wolfshtein, M., “The Velocity and Temperature Distribution of One-Dimensional Flow with Turbulence Augmentation and Pressure Gradient”, Int. J. Heat Mass Transfer. Vol. 12, pp. 301-318. 1969.
[34] Chen, C. H., and Patel, V. C., “Near-Wall Turbulence Models for Complex Flows Including Separation”, AIAA Journal. Vol. 26, pp. 641-648. 1988.
[35] Kader, B., “Temperature and Concentration Profiles in Fully Turbulent Boundary Layers”, Int. J. Heat Mass Tranfer. Vol. 24, pp. 1541-1544. 1981.
[36] ANSYS Inc., ANSYS Fluent 13.0, (http://www.ansys.com)
[37] White, F., and Christoph, G., “A Simple New Analysis of Compressible Turbulent Skin Friction Under Arbitrary Conditions”, Technical Report AFFDL-TR-70-133. 1971.
[38] Huang, P., Bradshaw, P., and Coakley, T., “Skin Friction and Velocity Profile Family for Compressible Turbulent Boundary Layers”, AIAA Journal. Vol. 31, pp. 1600-1604. 1993.
[39] Jayatillaka, C., “The Influence of Prandtl Number and Surface Roughness on the Resistance of the Laminar Sublayer to Momentum and Heat Transfer”, Prog. Heat Mass Transfer. Vol. 1, pp. 193-321. 1969.
[40] Ferziger, J. H. and Peric, M., Computational Methods for Fluid Dynamics, Springer, NY, 3rd edit. . 2002.
[41] Numerical Fluid Mechanics, Lecture Note. 18, MIT Open course. 2011.
[42] Patankar, S. V. and Spalding, D. B., “A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-dimensional Parabolic Flows”, Int. J. of Heat and Mass Transfer, Vol. 15, Issue 10, pp. 1787-1806. 1972.
[43] Vandoormaal, J. P. and Raithby, H. F., “Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows”, Numerical Heat Transfer, Vol. 7, Issue 2, pp. 147-163. 1984.
[44] Tannehill, J. C., Anderson, D. A. and Pletcher, R. H., Computational Fluid Mechanics and Heat Transfer, 2nd edit., Taylor & Francis. 1997.