簡易檢索 / 詳目顯示

研究生: 陳玉清水
Thuy, Tran Ngoc Thanh
論文名稱: 磁性雜質對碳膜的狀態密度修正
Studies on Density of state Correction Induced by Magnetic Impurity on Graphene
指導教授: 陳家駒
Chen, Chia-Chu
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 44
外文關鍵詞: mean field approximation, density of state
相關次數: 點閱:70下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Based on the mean field approximation and the Green’s function techniques, we have reviewed the paper “Localized Magnetic states in Graphene” published by Uchoa et al. In this thesis, we have extended their work by applying the mean field approximation to the equation of motion instead of applying it directly to the hamiltonian as Uchoa’s work and obtained the density of state correction induced by magnetic impurity on graphene.

    Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Review on Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Lattice structure of Graphene . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Graphene stacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.1 Bilayer graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.2 Trilayer graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Electronic properties of Graphene . . . . . . . . . . . . . . . . . . . . . . 8 2.3.1 Band structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.2 Cyclotron mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.3 Density of states . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.4 Dirac fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3 Green’s Function and the Mean Field Approximation . . . . . . . . . . . . . . . 18 3.1 Time-independent Green’s functions . . . . . . . . . . . . . . . . . . . . . 18 3.2 Time-dependent Green’s functions . . . . . . . . . . . . . . . . . . . . . . 20 3.3 Equation of motion method . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.4 The mean field approximation . . . . . . . . . . . . . . . . . . . . . . . . 23 4 The Density of State of Localized Magnetic Impurity . . . . . . . . . . . . . . . 24 4.1 Localized Magnetic States in Metals . . . . . . . . . . . . . . . . . . . . . 24 4.2 Localized magnetic states in graphene . . . . . . . . . . . . . . . . . . . . 26 5 Beyond the standard Mean Field Approximation . . . . . . . . . . . . . . . . . . 35 6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

    [1] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys., vol. 81, pp. 109–162, Jan 2009.
    [2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless dirac fermions in graphene,” Nature, vol. 438, no. 7065, pp. 197–200, 2005.
    [3] K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Communications,
    vol. 146, pp. 351 – 355, 2008.
    [4] K. Kim, J.-Y. Choi, T. Kim, S.-H. Cho, and H.-J. Chung, “A role for graphene in siliconbased semiconductor devices,” Nature, vol. 479, no. 7373, pp. 338–344, 2011.
    [5] B. Uchoa, V. N. Kotov, N. M. R. Peres, and A. H. Castro Neto, “Localized magnetic states in graphene,” Phys. Rev. Lett., vol. 101, p. 026805, Jul 2008.
    [6] P.W. Anderson, “Localized magnetic states in metals,” Phys. Rev., vol. 124, pp. 41–53, Oct 1961.
    [7] E. Jomehzadeh, A. Saidi, and N. Pugno, “Large amplitude vibration of a bilayer graphene embedded in a nonlinear polymer matrix,” Physica E: Low-dimensional Systems
    and Nanostructures, vol. 44, no. 10, pp. 1973 – 1982, 2012.
    [8] M. Hanfland, H. Beister, and K. Syassen, “Graphite under pressure: Equation of state and first-order raman modes,” Phys. Rev. B, vol. 39, pp. 12 598–12 603, Jun 1989.
    [9] P. R. Wallace, “The band theory of graphite,” Phys. Rev., vol. 71, pp. 622–634, May 1947.
    [10] C. Kittel, Introduction to solid state physics. Hoboken, NJ: Wiley, 2005.
    [11] G. Dresselhaus, A. F. Kip, and C. Kittel, “Cyclotron resonance of electrons and holes in silicon and germanium crystals,” Phys. Rev., vol. 98, pp. 368–384, Apr 1955.
    [12] N. Ashcroft, Solid state physics. New York: Holt, Rinehart and Winston, 1976.
    [13] C. Kittel, Quantum theory of solids. New York: Wiley, 1987.
    [14] E. N. Economou, Green’s functions in quantum physics. Berlin London: Springer, 2010.
    [15] S. Doniach, Green’s functions for solid state physicists. London River Edge, NJ: Imperial College Press Distributed by World Scientific Pub, 1998.

    下載圖示 校內:2018-07-29公開
    校外:2018-07-29公開
    QR CODE