| 研究生: |
杜炯榮 Du, Jyong-rong |
|---|---|
| 論文名稱: |
應用高頻交流電場下之非平衡電荷極化原理來設計於奈升尺度下操控微流體與次微米膠體粒子的微流控平台 Microfluidic Platform Utilizing Non-Equilibrium Electrokinetics Induced by High-Frequency AC Polarization:Design, Control, and Manipulation of Fluid Flows and Submicron Colloids |
| 指導教授: |
魏憲鴻
Wei, Hsien-hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 189 |
| 中文關鍵詞: | DNA收集及傳輸 、介電泳 、交流電滲 |
| 外文關鍵詞: | ac electroosmosis, DNA trapping and transport, dielectrophoresis |
| 相關次數: | 點閱:94 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文由四個T字型電極為基礎,再藉由非對稱交流電場作用下所形成之電荷極化現象來操控微流體與次微米膠體粒子。
本論文包含四部份,第一部份,本論文提出一個運用交流電荷動力現象來收集並濃縮DNA分子的新方法。此法可使得局部區域內之DNA分子濃度在數秒內瞬間提升,且收集DNA分子的作用範圍可長達1mm。同時,本方法不需連續提供樣品,對於限量之樣品即可達到明顯的濃度提升。
第二部份,我再將兩組非對稱排列的四個T字型電極組合成一新的電極設計,並觀察次微米膠體粒子於交流電場作用下之流動行為,其結果可發現在高頻作用時,大粒子受介電泳之影響較大,而在低頻作用時,可觀察到與第一部份相似的粒子聚集行為。第三部份使用與第二部份相同之電極晶片來提濃稀薄的DNA溶液,且可發現此提濃效率較第一部份為佳。第四部份,我再應用第三部份之結果對已濃縮之DNA分子團施以外加直流電場或流動方式來進行DNA分子傳輸,此可達成在一連續裝置中同時進行收集與輸送生物分子之目的。最後,亦討論此微流體晶片的發展潛力。
This thesis focuses on manipulation of fluid flow and submicron colloids based on asymmetric ac polarization using quadruple electrode design.
There are four parts in this thesis. In Part I, I present a new electrokinetic scheme capable of trapping and concentrating a trace amount of DNA molecules efficiently. I demonstrate that DNAs not only are rapidly concentrated into a compact cone within just few seconds, but also are trapped remotely in the form of focused threads that can extend as far as 1mm. More importantly, the concentration can be enhanced by several decades without any continuous DNA feeding.
In Part II, I design an electrode system combining two sets of quadrupole electrode to observe the motion of submicron colloids under ac fields. At high frequencies, larger particles are more susceptible to dielectrophoretic effects. At low frequencies, however, I find similar particle aggregation behavior as in Part I due to ac electrokinetic flow. In Part III, I employ the same electrode system in Part II to concentrate dilute DNA molecules, and find that DNAs can be rapidly concentrated into an even larger spot compared to that in Part I. In Part IV, I apply an additional dc field or flow to convey the concentrated DNA spot found in Part III, and demonstrate the capability for realizing concentration and transport of biomolecules in a continuous fashion. Potential applications of my microfluidic device are also discussed.
1.Asbury, L. A., Alan, H. D., Trapping of DNA by Dielectrophoresis, Electrophoresis, 23, 2658-2666, 2002.
2.Bown, M. R., Meinhart, C. D., AC Electroosmotic Flow in a DNA Concentrator, Microfluid Nanofluid, 2, 513-523, 2006.
3.Brahmasandra, S. N., Ugaz, V. M., Burke, D. T., Mastrangelo, C. H., Burns, M. A., Electrophoresis in Microfabricated Devices Using Photopolymerized Polyacrylamide Gels and Electrode-Defined Sample Injection, Electrophoresis, 22, 300-311, 2001.
4.Dai, J., Ito, T., Sun, L., Crooks, R. M., Electrokinetic Trapping and Concentration Enrichment of DNA in a Microfluidic Channel, J. Am. Chem. Soc., 125, 13026-13027., 2003.
5.Dittrich, P. S., Tachikawa, K., Manz, A., Micro Total Analysis Systems. Latest Advancements and Trends, Anal. Chem., 78, 3887-3908, 2006.
7.Gonzalez, A., Ramos, A., Green, N. G., Castellanos, A., Morgan, H., Fluid Flow Induced by Nonuniform AC Electric Field in Electrolytes on Microelectrodes. Ⅱ.A Linear Double-Layer Analysis, Phys. Rev. E, 61(4), 4019-4028, 2000.
8.Green, N. G., Ramos, A., Gonzalez, A., Morgan, H., Castellanos, A., Fluid Flow Induced by Nonuniform AC Electric Field in Electrolytes on Microelectrodes. Ⅰ. Experimental Measurements, Phys. Rev. E, 61(4), 4011-4018, 2000.
9.Green, N. G., Ramos, A., Gonzalez, A., Morgan, H., Castellanos, A., Fluid Flow Induced by Nonuniform AC Electric Field in Electrolytes on Microelectrodes. Ⅲ. Observation of Streamlines and Numerical Simulation, Phys. Rev. E, 66, 026305, 2002.
10.Green, N. G., Ramos,A., Morgan,H., AC Electrokinetics: a Survey of Sub-Micrometre Particle Dynamics, J. Phys. D: Appl. Phys., 33, 632–641, 2000.
11.Hatch, A. V., Herr, A. E., Throckmorton, D. J., Brennan, J. S., Singh, A. K., Integrated Preconcentration SDS-PAGE of Proteins in Microchips Using Photopatterned Cross-Linked Polyacrylamide Gels, Anal. Chem., 78, 4976-4984, 2006.
12.Khandurina, J., Jacobson, S. C., Water, L. C., Foote, R. S., Ramsey, J. M., Microfabrication Porous Membrane Structure for Sample Concentration and Electrophoretic Analysis, Anal. Chem., 71, 1815-1819, 1999.
13.Kim, S. M., Burns, M. A., Hasselbrink, E. F., Electrokinetic Protein Preconcentration Using a Simple Glass/Poly(dimethylsiloxane) Microfluidic Chip, Anal. Chem., 78, 4779-4785, 2006.
14.Lastochkin, D., Zhou, R., Wang, P., Ben, Y., Chang, H. C., Electrokinetic Micropump and Micromixer Design Based on AC Faradaic Polarization, J. Appl. Phys., 96(3),1730-1733, 2004.
15.Lin, C. H., Kaneta, T., On-Line Sample Concentration Techniques in Capillary Electrophoresis: Velocity Gradient Techniques and Sample Concentration Techniques for Biomolecules, Electrophoresis, 25, 4058-4073, 2004.
16.Lin, H. Y., Tsai, L. C., Chi, P. Y., Chen, C. D., Positioning of Extended Individual DNA Molecules on Electrodes by Non-Uniform AC Electric Fields, Nanotechnology, 16, 2738–2742, 2005.
17.Minerick, A. R., Zhou, R., Takhistov, P., Chang, H. C., Manipulation and Characterization of Red Blood Cells with Alternating Current Fields in Microdevices, Electrophoresis, 24, 3703-3717, 2003.
18.Morgan, H., Green, N. G., AC Electrokinetics: Colloids and Nanoparticles, Research Studies Press, Philadelphia, USA, 2003
19.Morgan, H., Hughes, M. P., Green, N. G., Separation of Submicron Bioparticles by Dielectrophoresis, Biophys. J., 77, 516–525, 1999
20.Ramos, A., Gonzalez, A., Castellanos, A., Green, N. G., Morgan, H., Pumping of Liquids with AC Voltages Applied to Asymmetric Pairs of Microelectrodes, Phys. Rev. E, 67, 056302, 2003.
21.Wang, S., Hu, X., Lee, L. J., Dynamic Assembly by Electrokinetic Microfluidics, J. Am. Chem. Soc.,129, 254, 2007.
22.Washizu, M., Kurosawa, O., Electrostatic Manipulation of DNA in Microfabricated Structures, IEEE Trans. Ind. Appl., 26(6), 1165-1172, 1990.
23.Wu, J. T., Du, J. R., Juang, Y. J., Wei, H. H., Rectified Elongational Streaming Due to Asymmetric Electro-Osmosis Induced by AC Polarization, Appl. Phys. Lett., 90, 134103,2007
24.Yu, C., Davey, M. H., Svec, F., Frechet, J. M. J., Monolithic Porous Polymer for On-Chip Solid-Phase Extraction and Preconcentration Prepared by Photoinitiated in Situ Polymerization within a Microfluidic Device, Anal. Chem., 73, 5088-5096, 2001.
25.吳傑堂,應用高頻交流電場下之非平衡電荷動力現象來操控為流體與次微米膠體粒子,碩士論文,國立成功大學,2007。