簡易檢索 / 詳目顯示

研究生: 杜炯榮
Du, Jyong-rong
論文名稱: 應用高頻交流電場下之非平衡電荷極化原理來設計於奈升尺度下操控微流體與次微米膠體粒子的微流控平台
Microfluidic Platform Utilizing Non-Equilibrium Electrokinetics Induced by High-Frequency AC Polarization:Design, Control, and Manipulation of Fluid Flows and Submicron Colloids
指導教授: 魏憲鴻
Wei, Hsien-hung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 189
中文關鍵詞: DNA收集及傳輸介電泳交流電滲
外文關鍵詞: ac electroosmosis, DNA trapping and transport, dielectrophoresis
相關次數: 點閱:94下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文由四個T字型電極為基礎,再藉由非對稱交流電場作用下所形成之電荷極化現象來操控微流體與次微米膠體粒子。
    本論文包含四部份,第一部份,本論文提出一個運用交流電荷動力現象來收集並濃縮DNA分子的新方法。此法可使得局部區域內之DNA分子濃度在數秒內瞬間提升,且收集DNA分子的作用範圍可長達1mm。同時,本方法不需連續提供樣品,對於限量之樣品即可達到明顯的濃度提升。
    第二部份,我再將兩組非對稱排列的四個T字型電極組合成一新的電極設計,並觀察次微米膠體粒子於交流電場作用下之流動行為,其結果可發現在高頻作用時,大粒子受介電泳之影響較大,而在低頻作用時,可觀察到與第一部份相似的粒子聚集行為。第三部份使用與第二部份相同之電極晶片來提濃稀薄的DNA溶液,且可發現此提濃效率較第一部份為佳。第四部份,我再應用第三部份之結果對已濃縮之DNA分子團施以外加直流電場或流動方式來進行DNA分子傳輸,此可達成在一連續裝置中同時進行收集與輸送生物分子之目的。最後,亦討論此微流體晶片的發展潛力。

    This thesis focuses on manipulation of fluid flow and submicron colloids based on asymmetric ac polarization using quadruple electrode design.
    There are four parts in this thesis. In Part I, I present a new electrokinetic scheme capable of trapping and concentrating a trace amount of DNA molecules efficiently. I demonstrate that DNAs not only are rapidly concentrated into a compact cone within just few seconds, but also are trapped remotely in the form of focused threads that can extend as far as 1mm. More importantly, the concentration can be enhanced by several decades without any continuous DNA feeding.
    In Part II, I design an electrode system combining two sets of quadrupole electrode to observe the motion of submicron colloids under ac fields. At high frequencies, larger particles are more susceptible to dielectrophoretic effects. At low frequencies, however, I find similar particle aggregation behavior as in Part I due to ac electrokinetic flow. In Part III, I employ the same electrode system in Part II to concentrate dilute DNA molecules, and find that DNAs can be rapidly concentrated into an even larger spot compared to that in Part I. In Part IV, I apply an additional dc field or flow to convey the concentrated DNA spot found in Part III, and demonstrate the capability for realizing concentration and transport of biomolecules in a continuous fashion. Potential applications of my microfluidic device are also discussed.

    摘要......................................................i Abstract.................................................ii 致謝....................................................iii 目錄.....................................................iv 表目錄....................................................x 圖目錄...................................................xi 符號說明................................................xxi 第一章 緒論............................................1 1.1研究背景...............................................1 1.2文獻回顧...............................................2 1.2.1於微流道系統中應用交流(AC)電場所誘發之電動現象.......2 1.2.2應用交流(AC)電場在微流道系統中操控DNA分子............4 1.3研究動機...............................................5 第二章 電荷動力學基本原理.............................15 2.1電雙層(Electrical double layer).......................15 2.2電滲流(Electro-Osmosis ,EO)...........................17 2.3電泳(Electrophoresis ,EP).............................18 2.4介電泳(Dielectrophoresis ,DEP)........................20 2.5交流電滲流(AC Electro-Osmosis , ACEO).................21 第三章 微電極系統之製作與自組裝.......................28 3.1微電極晶片製作........................................28 3.1.1金(Au)電極晶片製作..................................29 3.1.1.A玻璃基材清洗......................................29 3.1.1.B金屬真空蒸鍍......................................29 3.1.1.C微電極光罩設計....................................30 3.1.1.D光微影製程(Photolithigraphy)......................31 3.1.2氧化銦錫(ITO)電極晶片製作...........................34 3.2微流道光微影製程......................................35 3.2.1微流道光罩設計......................................35 3.2.2晶片清洗............................................36 3.2.3塗佈光阻............................................36 3.2.4軟烤(Soft Baking)...................................38 3.2.5曝光(Exposure)......................................38 3.2.6曝後烤(Post Expose Baking)..........................40 3.2.7顯影(Development)...................................40 3.2.8硬烤(Hard Baking)...................................41 3.3微流道製作............................................41 3.3.1材料................................................41 3.3.2微流道模型製作......................................41 3.4 微電極與微流道系統之整合與組裝.......................42 3.4.1微流道與微電極組合..................................42 3.4.2微流道系統與外部管線組合............................43 3.4.3微電極晶片與外接電路組裝............................44 3.5 PDMS表面改質.........................................44 3.6實驗設備..............................................45 第四章 應用非對稱交流電滲流流動結構與介電泳作用於長距離快速捕捉DNA分子之探討....................................55 4.1 實驗.................................................56 4.1.1實驗背景............................................56 4.1.2工作溶液............................................57 4.1.3實驗步驟............................................58 4.1.4實驗相關細節........................................59 4.1.5影像處理軟體(Meta-morph)拍攝條件參數設定說明........60 4.1.5.A影像處理軟體(Meta-morph)的影像擷取參數條件設定....61 4.1.5.B影像處理軟體(Meta-morph)的影像擷取時間設定........62 4.2實驗現象觀察與實驗數據記錄方法........................62 4.2.1實驗現象觀察........................................62 4.2.1.A DNA分子受流動影響所產生之聚集現象................63 4.2.1.B形成DNA分子聚集結構之電動現象.....................65 4.2.2收集DNA之螢光強度測量及濃度鑑定.....................66 4.2.2.A螢光強度數值偵測方法及其數據圖表製作..............67 4.2.2.B建立DNA溶液濃度與螢光強度數值對照表...............67 4.3應用交流電場所形成之電動現象於捕捉DNA分子之特性探討...68 4.3.1提濃效率............................................69 4.3.2應用電場開關使DNA分子在電極表面上重複聚集與釋放.....70 4.3.3施加電壓於提濃效率之影響............................71 4.4 結論.................................................72 第五章 基於交流電滲流原理與電極配對效應所衍生之電極設計概念與其流動行為之實驗探討...............................86 5.1 設計概念.............................................87 5.2實驗..................................................89 5.2.1工作溶液及螢光粒子..................................89 5.2.2實驗步驟............................................90 5.2.3實驗相關細節........................................91 5.3電極設計於交流電場作用下所產生之流動現象..............91 5.3.1 Type A.............................................92 5.3.1.A電極設計..........................................92 5.3.1.B於交流電場作用下所產生之流動行為..................92 5.3.2 Type B.............................................94 5.3.2.A電極設計..........................................94 5.3.2.B於交流電場作用下所產生之流動行為..................95 5.3.3 Type C.............................................96 5.3.3.A電極設計..........................................96 5.3.3.B於交流電場作用下所產生之流動行為..................96 5.4探討在交流電場作用下,不同大小之次微米膠體粒子於Type C電極晶片中之流動行為.......................................97 5.4.1運用交流電場驅動含粒徑d=0.92μm次微米膠體粒子溶液所產生之現象探討...............................................98 5.4.2運用交流電場驅動含粒徑d=0.1μm次微米膠體粒子溶液所產生之現象探討...............................................99 5.4.3在交流電場作用下,應用Type C電極晶片來驅動不同大小之次微米膠體粒子所形成之現象探討............................100 5.5 結論................................................104 第六章 在交流電場驅動下,運用Type C電極設計於DNA溶液中所產生之聚集行為..........................................117 6.1 實驗................................................118 6.1.1 Au電極與ITO電極之優缺點...........................118 6.1.2工作溶液...........................................118 6.1.3實驗步驟...........................................119 6.1.4實驗相關細節.......................................119 6.1.5影像處理軟體(InVivo)拍攝條件參數設定說明...........120 6.1.5.A影像處理軟體(InVivo)的影像擷取參數條件設定.......121 6.1.5.B影像處理軟體(InVivo)的影像擷取時間設定...........122 6.2在交流電場驅動下,運用Type C設計於ITO電極晶片上所產生之DNA分子聚集現象與數據紀錄方法...........................122 6.2.1實驗現象觀察.......................................122 6.2.1.A DNA分子受流動影響所產生之聚集現象..............123 6.2.1.B 形成DNA分子聚集之電動現象.......................126 6.2.2收集DNA之螢光強度測量與濃度鑑定....................128 6.2.2.A螢光強度數值偵測方法及其數據圖表製作.............129 6.2.2.B建立DNA溶液濃度與螢光強度數值對照表..............129 6.2.3比較原Au電極晶片設計與Type C ITO電極晶片設計.......130 6.3在交流電場驅動下,運用Type C設計於Au電極晶片上所產生之DNA分子聚集現象與數據紀錄方法...........................133 6.3.1 DNA分子受流動影響所產生之聚集行為與其電動現象.....134 6.3.2收集DNA之螢光強度測量與其濃度鑑定..................134 6.3.3比較Type C Au電極晶片與Type C ITO電極晶片..........135 6.3.4施加電壓於提濃效率之探討...........................138 6.3.5比較原Au電極晶片設計與Type C Au電極晶片設計........139 6.4 結論................................................140 第七章 結合交流電場與電泳或外加流動方式聚集並傳輸DNA分子之實驗探討..............................................152 7.1結合交流電場與電泳方式聚集並傳輸DNA分子之實驗探討....152 7.1.1實驗...............................................152 7.1.1.A工作溶液.........................................153 7.1.1.B實驗步驟.........................................153 7.1.1.C實驗相關細節.....................................154 7.1.2交流電極接線方式對電泳之流動行為探討...............154 7.1.2.A交流電極接線但不連接至波形產生器對電泳效應之流動行為探討....................................................155 7.1.2.B交流電極連接至波形產生器,且其中心電極連接至接地導線,對電泳效應之流動行為探討............................156 7.1.2.C交流電極連接至波形產生器,且其中心電極不連接至接地導線,對電泳效應之流動行為探討............................157 7.1.2.D探討交流電極接線方式與其電泳效應之流動行為.......158 7.1.2.E驗證交流電極接線方式與其電泳效應之流動行為.......160 7.1.3基於交流電極接線方式與其所產生之電泳效應來驅動DNA分子......................................................162 7.2結合交流電場與外加流動方式聚集並傳輸DNA分子之實驗探討......................................................163 7.2.1實驗...............................................163 7.2.1.A實驗步驟.........................................164 7.2.1.B實驗相關細節.....................................164 7.2.2流量大小對其輸送DNA分子之效率探討..................165 7.3結論.................................................166 第八章 結論與建議....................................176 8.1結論.................................................176 8.2改進建議.............................................177 8.3 未來研究方向........................................179 參考文獻................................................181 附錄A 電極晶片再改進.................................184 附錄B 螢光染劑之吸收/螢光激發光譜圖..................186 自述....................................................189

    1.Asbury, L. A., Alan, H. D., Trapping of DNA by Dielectrophoresis, Electrophoresis, 23, 2658-2666, 2002.
    2.Bown, M. R., Meinhart, C. D., AC Electroosmotic Flow in a DNA Concentrator, Microfluid Nanofluid, 2, 513-523, 2006.
    3.Brahmasandra, S. N., Ugaz, V. M., Burke, D. T., Mastrangelo, C. H., Burns, M. A., Electrophoresis in Microfabricated Devices Using Photopolymerized Polyacrylamide Gels and Electrode-Defined Sample Injection, Electrophoresis, 22, 300-311, 2001.
    4.Dai, J., Ito, T., Sun, L., Crooks, R. M., Electrokinetic Trapping and Concentration Enrichment of DNA in a Microfluidic Channel, J. Am. Chem. Soc., 125, 13026-13027., 2003.
    5.Dittrich, P. S., Tachikawa, K., Manz, A., Micro Total Analysis Systems. Latest Advancements and Trends, Anal. Chem., 78, 3887-3908, 2006.
    7.Gonzalez, A., Ramos, A., Green, N. G., Castellanos, A., Morgan, H., Fluid Flow Induced by Nonuniform AC Electric Field in Electrolytes on Microelectrodes. Ⅱ.A Linear Double-Layer Analysis, Phys. Rev. E, 61(4), 4019-4028, 2000.
    8.Green, N. G., Ramos, A., Gonzalez, A., Morgan, H., Castellanos, A., Fluid Flow Induced by Nonuniform AC Electric Field in Electrolytes on Microelectrodes. Ⅰ. Experimental Measurements, Phys. Rev. E, 61(4), 4011-4018, 2000.
    9.Green, N. G., Ramos, A., Gonzalez, A., Morgan, H., Castellanos, A., Fluid Flow Induced by Nonuniform AC Electric Field in Electrolytes on Microelectrodes. Ⅲ. Observation of Streamlines and Numerical Simulation, Phys. Rev. E, 66, 026305, 2002.
    10.Green, N. G., Ramos,A., Morgan,H., AC Electrokinetics: a Survey of Sub-Micrometre Particle Dynamics, J. Phys. D: Appl. Phys., 33, 632–641, 2000.
    11.Hatch, A. V., Herr, A. E., Throckmorton, D. J., Brennan, J. S., Singh, A. K., Integrated Preconcentration SDS-PAGE of Proteins in Microchips Using Photopatterned Cross-Linked Polyacrylamide Gels, Anal. Chem., 78, 4976-4984, 2006.
    12.Khandurina, J., Jacobson, S. C., Water, L. C., Foote, R. S., Ramsey, J. M., Microfabrication Porous Membrane Structure for Sample Concentration and Electrophoretic Analysis, Anal. Chem., 71, 1815-1819, 1999.
    13.Kim, S. M., Burns, M. A., Hasselbrink, E. F., Electrokinetic Protein Preconcentration Using a Simple Glass/Poly(dimethylsiloxane) Microfluidic Chip, Anal. Chem., 78, 4779-4785, 2006.
    14.Lastochkin, D., Zhou, R., Wang, P., Ben, Y., Chang, H. C., Electrokinetic Micropump and Micromixer Design Based on AC Faradaic Polarization, J. Appl. Phys., 96(3),1730-1733, 2004.
    15.Lin, C. H., Kaneta, T., On-Line Sample Concentration Techniques in Capillary Electrophoresis: Velocity Gradient Techniques and Sample Concentration Techniques for Biomolecules, Electrophoresis, 25, 4058-4073, 2004.
    16.Lin, H. Y., Tsai, L. C., Chi, P. Y., Chen, C. D., Positioning of Extended Individual DNA Molecules on Electrodes by Non-Uniform AC Electric Fields, Nanotechnology, 16, 2738–2742, 2005.
    17.Minerick, A. R., Zhou, R., Takhistov, P., Chang, H. C., Manipulation and Characterization of Red Blood Cells with Alternating Current Fields in Microdevices, Electrophoresis, 24, 3703-3717, 2003.
    18.Morgan, H., Green, N. G., AC Electrokinetics: Colloids and Nanoparticles, Research Studies Press, Philadelphia, USA, 2003
    19.Morgan, H., Hughes, M. P., Green, N. G., Separation of Submicron Bioparticles by Dielectrophoresis, Biophys. J., 77, 516–525, 1999
    20.Ramos, A., Gonzalez, A., Castellanos, A., Green, N. G., Morgan, H., Pumping of Liquids with AC Voltages Applied to Asymmetric Pairs of Microelectrodes, Phys. Rev. E, 67, 056302, 2003.
    21.Wang, S., Hu, X., Lee, L. J., Dynamic Assembly by Electrokinetic Microfluidics, J. Am. Chem. Soc.,129, 254, 2007.
    22.Washizu, M., Kurosawa, O., Electrostatic Manipulation of DNA in Microfabricated Structures, IEEE Trans. Ind. Appl., 26(6), 1165-1172, 1990.
    23.Wu, J. T., Du, J. R., Juang, Y. J., Wei, H. H., Rectified Elongational Streaming Due to Asymmetric Electro-Osmosis Induced by AC Polarization, Appl. Phys. Lett., 90, 134103,2007
    24.Yu, C., Davey, M. H., Svec, F., Frechet, J. M. J., Monolithic Porous Polymer for On-Chip Solid-Phase Extraction and Preconcentration Prepared by Photoinitiated in Situ Polymerization within a Microfluidic Device, Anal. Chem., 73, 5088-5096, 2001.
    25.吳傑堂,應用高頻交流電場下之非平衡電荷動力現象來操控為流體與次微米膠體粒子,碩士論文,國立成功大學,2007。

    下載圖示 校內:2011-06-03公開
    校外:2011-06-03公開
    QR CODE