簡易檢索 / 詳目顯示

研究生: 何旻璇
Ho, Min-Hsuan
論文名稱: WWOX及blebbistatin在癲癇發作中扮演的角色
Roles of WWOX and blebbistatin in the onset of epileptic seizure
指導教授: 郭余民
Kuo, Yu-Min
張南山
Chang, Nan-Shan
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 69
中文關鍵詞: WWOX癲癇BlebbistatinZ細胞
外文關鍵詞: WWOX, Epilepsy, Blebbistatin, Z cell
相關次數: 點閱:42下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • WOREE是一種與WWOX相關的癲癇性腦病變。患有此病徵的兒童面臨著極高的癲癇風險,通常導致極短的預期壽命,大多數在三歲以前就無法倖存。在以前的研究中,我們已經建立了WWOX和神經退行性疾病之間的關聯,具體而言,我們確定WWOX在第一個WW結構域具有Tyr33磷酸化(pY33-WWOX),具有抑制癌症的功能,並在過表達時可誘導細胞凋亡。相反地,當Ser14被磷酸化時(pS14-WWOX),並不會促進凋亡,而是促進癌症和阿茲海默(AD)。pS14-WWOX存在於癌症和AD腦部病變中。此外,我們之前的研究揭示了一組特定淋巴細胞細胞的潛力,即非T非B spleen HYAL-2+/CD3−/CD19−淋巴細胞(由於是被Zfra肽激活而被稱為Z細胞),他能夠緩解AD相關症狀。此外,我們還發現了一種小型化學物質blebbistatin,能夠激活Z細胞,以WWOX依賴性方式殺死癌細胞,在這項研究中,我們旨在研究blebbistatin通過WWOX激活Z細胞來預防PTZ所誘導的癲癇。當小鼠通過尾靜脈注射blebbistatin後,根據癲癇評分測試觀察到blebbistatin顯著抑制了PTZ誘導的癲癇。PTZ降低了小鼠大腦中WWOX蛋白的總水平,但增加了pS14-WWOX。給小鼠注射blebbistatin會導致Wwox+/+和Wwox+/-小鼠中WWOX的上調和pS14-WWOX的下調。此外,blebbistatin有效減輕了PTZ引起的病理特徵,包括神經毒性、神經元損失和異常神經生長。從機制上來說,blebbistatin激活的Z細胞以WWOX依賴性的方式抑制PTZ所誘導的癲癇。與Wwox+/-小鼠相比,激活的Z細胞在Wwox+/+小鼠中有更好的PTZ的抵抗力。總之,blebbistatin能有效減輕癲癇的發作,部分原因是WWOX的激活以及WWOX依賴性的Z細胞激活,從而抑制PTZ誘導的病理。

    WOREE is a WWOX-related epileptic encephalopathy. Children with WWOX-associated epilepsy face an elevated risk of experiencing severe epilepsy, often leading to a tragically short life expectancy, with most not surviving beyond the age of three. In our earlier investigations, we have established an association between WWOX and neurodegenerative diseases. Specifically, we determined WWOX, possessing Tyr33 phosphorylation at the first WW domain (pY33-WWOX), exerts cancer suppression and may induce apoptosis when overexpressed. Conversely, when WWOX is Ser14-phosphorylated, pS14-WWOX is not proapoptotic and promotes the progression of cancer and Alzheimer's disease (AD). pS14-WWOX can be found in the lesions of cancer and AD brains. Furthermore, our previous research unveiled the potential of a specific group of lymphocytes, known as non-T/non-B spleen HYAL-2+/CD3−/CD19− lymphocytes (referred to as Z cells due to activation by Zfra peptide), in alleviating the symptoms associated with AD. Additionally, we have identified a small chemical blebbistatin capable of activating Z cells to kill cancer cells in a WWOX-dependent manner. In this study, we aimed to investigate the potential of blebbistatin in preventing pentylenetetrazol (PTZ)-induced seizure epilepsy by activating Z cells via WWOX activation. When mice received blebbistatin via tail vein injections, these mice became significantly resistant to PTZ-induced seizures, as determined by seizure score testing. PTZ decreased the total levels of WWOX protein but increased pS14-WWOX in the mouse brain. Pre-injection of mice with blebbistatin resulted in the upregulation of WWOX and downregulation of pS14-WWOX in both Wwox+/+ and Wwox+/- mice. Moreover, blebbistatin effectively mitigated the pathological characteristics induced by PTZ, including neurotoxicity, neuronal loss, and abnormal neurogenesis. Mechanistically, blebbistatin-activated Z cells conferred resistance to PTZ-induced seizures in a WWOX-dependent manner. Activated spleen Z cells provided better resistance to PTZ in the wild type Wwox+/+ mice than the heterozygous Wwox+/- mice. In conclusion, blebbistatin effectively mitigates seizures due in part to activation of WWOX along with WWOX-dependent Z cell activation to suppress PTZ-induced pathologies.

    中文摘要I Abstract II 誌謝IV Figure Index VII Abbreviation VIII Introduction 1 Goal of this study 1 WW Domain-Containing Oxidoreductase (WWOX) 2 Role of WWOX in neurodegeneration disease 3 WWOX-related early infantile epileptic encephalopathy (WOREE) 5 Epilepsy 7 Hyal-2/WWOX/Smad4 signal pathway 8 Zfra and Sonicated Hyaluronan (HAson) induces Z cell activation via Hyal-2+CD3-CD19- pathway 9 IκBα/WWOX/ERK signaling pathway 10 (±)-Blebbistatin and CI-4AS-1 10 Materials and methods 12 Animals 12 Cell line 12 Antibodies 12 (±)-Blebbistatin and CI-4AS-1 13 Induction of seizure 13 PTZ-induced seizure 14 Preparing brain tissue 14 Immuohistochemistry 15 Nissl staining 15 Protein extraction from animal tissue 16 Western blotting 16 MTT assay 17 Z cells activation and purification by sorting analysis 17 Quantification and statistical analysis 17 Results 19 Blebbistatin inhibited PTZ-induced seizure 19 PTZ decreased levels of WWOX and increased levels of pS14-WWOX and blebbistatin reversed PTZ-induced changes in WWOX 20 Blebbistatin blocked PTZ-induced excitotoxicity 22 Blebbistatin inhibited PTZ-induced neuronal loss 23 Blebbistatin blocked abnormal neurogenesis induced by PTZ 24 Blebbistatin treatment activated the expression of Z cell, and the effect may occur through a WWOX-dependent mechanism25 Blebbistatin-activated Z cells suppressed epileptic seizure symptoms 26 The performance of blebbistatin-activated Z cells in the brain 27 Discussion 29 References 33 Figures 42 Appendix 68

    1. Bednarek, A. K., Laflin, K. J., Daniel, R. L., Liao, Q., Hawkins, K. A., and Aldaz, C. M. (2000) WWOX, a novel WW domain-containing protein mapping to human chromosome 16q23. 3–24.1, a region frequently affected in breast cancer. Cancer Res. 60, 2140-2145
    2. Chang, N.-S., Pratt, N., Heath, J., Schultz, L., Sleve, D., Carey, G. B., and Zevotek, N. (2001) Hyaluronidase induction of a WW domain-containing oxidoreductase that enhances tumor necrosis factor cytotoxicity. J. Biol Chem. 276, 3361-3370
    3. Ried, K., Finnis, M., Hobson, L., Mangelsdorf, M., Dayan, S., Nancarrow, J. K., Woollatt, E., Kremmidiotis, G., Gardner, A., and Venter, D. (2000) Common chromosomal fragile site FRA16D sequence: identification of the FOR gene spanning FRA16D and homozygous deletions and translocation breakpoints in cancer cells. Hum Mol Genet. 9, 1651-1663
    4. McDonald, C. B., Buffa, L., Bar-Mag, T., Salah, Z., Bhat, V., Mikles, D. C., Deegan, B. J., Seldeen, K. L., Malhotra, A., and Sudol, M. (2012) Biophysical basis of the binding of WWOX tumor suppressor to WBP1 and WBP2 adaptors. J. Mol Biol. 422, 58-74
    5. Aqeilan, R. I., Pekarsky, Y., Herrero, J. J., Palamarchuk, A., Letofsky, J., Druck, T., Trapasso, F., Han, S.-Y., Melino, G., and Huebner, K. (2004) Functional association between Wwox tumor suppressor protein and p73, a p53 homolog. Proc Natl Acad of Sci. 101, 4401-4406
    6. Aqeilan, R. I., Donati, V., Palamarchuk, A., Trapasso, F., Kaou, M., Pekarsky, Y., Sudol, M., and Croce, C. M. (2005) WW domain–containing proteins, WWOX and YAP, compete for interaction with ErbB-4 and modulate its transcriptional function. Cancer Res. 65, 6764-6772
    7. Ludes-Meyers, J. H., Kil, H., Bednarek, A. K., Drake, J., Bedford, M. T., and Aldaz, C. M. (2004) WWOX binds the specific proline-rich ligand PPXY: identification of candidate interacting proteins. Oncogene 23, 5049-5055
    8. Jin, C., Ge, L., Ding, X., Chen, Y., Zhu, H., Ward, T., Wu, F., Cao, X., Wang, Q., and Yao, X. (2006) PKA-mediated protein phosphorylation regulates ezrin–WWOX interaction. Biochem Biophys Res Commun. 341, 784-791
    9. Chang, N.-S., Hsu, L.-J., Lin, Y.-S., Lai, F.-J., and Sheu, H.-M. (2007) WW domain-containing oxidoreductase: a candidate tumor suppressor. Trends Mol Med. 13, 12-22
    10. McDonald, C. B., Buffa, L., Bar-Mag, T., Salah, Z., Bhat, V., Mikles, D. C., Deegan, B. J., Seldeen, K. L., Malhotra, A., and Sudol, M. (2012) Biophysical basis of the binding of WWOX tumor suppressor to WBP1 and WBP2 adaptors. J. Mol Biol. 422, 58-74
    11. Reuven, N., Shanzer, M., and Shaul, Y. (2015) Tyrosine phosphorylation of WW proteins. Exp Biol Med. 240, 375-382
    12. Takeuchi, T., Adachi, Y., and Nagayama, T. (2012) A WWOX-binding molecule, transmembrane protein 207, is related to the invasiveness of gastric signet-ring cell carcinoma. Carcinogenesis. 33, 548-554
    13. Zheng, Q., Zhou, Y., You, Q., Shou, F., Pang, Q., and Chen, J. (2016) WWOX inhibits the invasion of lung cancer cells by downregulating RUNX2. Cancer Gene Ther. 23, 433-438
    14. Filling, C., Berndt, K. D., Benach, J., Knapp, S., Prozorovski, T., Nordling, E., Ladenstein, R., Jörnvall, H., and Oppermann, U. (2002) Critical residues for structure and catalysis in short-chain dehydrogenases/reductases. J. Biol Chem. 277, 25677-25684
    15. Farooq, A. (2015) Structural insights into the functional versatility of WW domain-containing oxidoreductase tumor suppressor. Exp Biol Med. 240, 361-374
    16. Hsu, L.-J., Schultz, L., Hong, Q., Van Moer, K., Heath, J., Li, M.-Y., Lai, F.-J., Lin, S.-R., Lee, M.-H., and Lo, C.-P. (2009) Transforming growth factor β1 signaling via interaction with cell surface Hyal-2 and recruitment of WWOX/WOX1. J. Biol Chem. 284, 16049-16059
    17. Sze, C.-I., Su, M., Pugazhenthi, S., Jambal, P., Hsu, L.-J., Heath, J., Schultz, L., and Chang, N.-S. (2004) Down-regulation of WW domain-containing oxidoreductase induces Tau phosphorylation in vitro: a potential role in Alzheimer's disease. J. Biol Chem. 279, 30498-30506
    18. Wang, H.-Y., Juo, L.-I., Lin, Y., Hsiao, M., Lin, J., Tsai, C., Tzeng, Y., Chuang, Y., Chang, N., and Yang, C. (2012) WW domain-containing oxidoreductase promotes neuronal differentiation via negative regulation of glycogen synthase kinase 3 β. Cell Death Differ. 19, 1049-1059
    19. Chang, J.-Y., He, R.-Y., Lin, H.-P., Hsu, L.-J., Lai, F.-J., Hong, Q., Chen, S.-J., and Chang, N.-S. (2010) Signaling from membrane receptors to tumor suppressor WW domain-containing oxidoreductase. Exp Biol Med. 235, 796-804
    20. Chang, N.-S., Doherty, J., and Ensign, A. (2003) JNK1 physically interacts with WW domain-containing oxidoreductase (WOX1) and inhibits WOX1-mediated apoptosis. J. Biol Chem. 278, 9195-9202
    21. Hong, Q., Hsu, L.-J., Schultz, L., Pratt, N., Mattison, J., and Chang, N.-S. (2007) Zfra affects TNF-mediated cell death by interacting with death domain protein TRADD and negatively regulates the activation of NF-κB, JNK1, p53 and WOX1 during stress response. BMC Mol Biol. 8, 1-17
    22. Li, M.-Y., Lai, F.-J., Hsu, L.-J., Lo, C.-P., Cheng, C.-L., Lin, S.-R., Lee, M.-H., Chang, J.-Y., Subhan, D., and Tsai, M.-S. (2009) Dramatic co-activation of WWOX/WOX1 with CREB and NF-κB in delayed loss of small dorsal root ganglion neurons upon sciatic nerve transection in rats. PLoS One. 4, e7820
    23. Chang, N.-S., Doherty, J., Ensign, A., Lewis, J., Heath, J., Schultz, L., Chen, S.-T., and Oppermann, U. (2003) Molecular mechanisms underlying WOX1 activation during apoptotic and stress responses. Biochem Pharmacol. 66, 1347-1354
    24. Chang, N.-S., Doherty, J., Ensign, A., Schultz, L., Hsu, L.-J., and Hong, Q. (2005) WOX1 is essential for tumor necrosis factor-, UV light-, staurosporine-, and p53-mediated cell death, and its tyrosine 33-phosphorylated form binds and stabilizes serine 46-phosphorylated p53. J. Biol Chem. 280, 43100-43108
    25. Hsu, L.-J., Chiang, M.-F., Sze, C.-I., Su, W.-P., Yap, Y. V., Lee, I., Kuo, H.-L., and Chang, N.-S. (2016) HYAL-2–WWOX–SMAD4 Signaling in Cell Death and Anticancer Response. Front in Cell Dev Biol. 4, 141
    26. Gaudio, E., Palamarchuk, A., Palumbo, T., Trapasso, F., Pekarsky, Y., Croce, C. M., and Aqeilan, R. I. (2006) Physical association with WWOX suppresses c-Jun transcriptional activity. Cancer Res. 66, 11585-11589
    27. Wang, W.-J., Ho, P.-C., Nagarajan, G., Chen, Y.-A., Kuo, H.-L., Subhan, D., Su, W.-P., Chang, J.-Y., Lu, C.-Y., and Chang, K. T. (2019) WWOX possesses N-terminal cell surface-exposed epitopes WWOX7-21 and WWOX7-11 for signaling cancer growth suppression and prevention in vivo. Cancers. 11, 1818
    28. Liu, T.-Y., Nagarajan, G., Chiang, M.-F., Huang, S.-S., Lin, T.-C., Chen, Y.-A., Sze, C.-I., and Chang, N.-S. (2022). WWOX Controls Cell Survival, Immune Response and Disease Progression by pY33 to pS14 Transition to Alternate Signaling Partners. Cells, 11, 2137
    29. Chen, S.-T., Chuang, J., Wang, J., Tsai, M., Li, H., and Chang, N.-S. (2004) Expression of WW domain-containing oxidoreductase WOX1 in the developing murine nervous system. Neuroscience. 124, 831-839
    30. Chang, H.-T., Liu, C.-C., Chen, S.-T., Yap, Y. V., Chang, N.-S., and Sze, C.-I. (2014) WW domain-containing oxidoreductase in neuronal injury and neurological diseases. Oncotarget. 5, 11792
    31. Aldaz, C.-M., Ferguson, B.-W., and Abba, M.-C. (2014). WWOX at the crossroads of cancer, metabolic syndrome related traits and CNS pathologies. Biochimica et biophysica acta, 1846(1), 188–200.
    32. Tochigi, Y., Takamatsu, Y., Nakane, J., Nakai, R., Katayama, K., and Suzuki, H. (2019). Loss of Wwox Causes Defective Development of Cerebral Cortex with Hypomyelination in a Rat Model of Lethal Dwarfism with Epilepsy. International journal of molecular sciences, 20, 3596.
    33. Kunkle, B.-W., Grenier-Boley, B., Sims, R., Bis, J.-C., Damotte, V., Naj, A.-C., Boland, A., Vronskaya, M., Van Der Lee, S.-J., and Amlie-Wolf, A. (2019) Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat Genet. 51, 414-430
    34. Sze, C.-I., Su, M., Pugazhenthi, S., Jambal, P., Hsu, L.-J., Heath, J., Schultz, L., and Chang, N.-S. (2004) Down-regulation of WW domain-containing oxidoreductase induces Tau phosphorylation in vitro: a potential role in Alzheimer's disease. J. Biol Chem. 279, 30498-30506.
    35. Chen, S.-T., Chuang, J.-I., Cheng, C.-L., Hsu, L.-J., and Chang, N.-S. (2005) Light-induced retinal damage involves tyrosine 33 phosphorylation, mitochondrial and nuclear translocation of WW domain-containing oxidoreductase in vivo. Neuroscience. 130, 397-407
    36. Lo, C.-P., Hsu, L.-J., Li, M.-Y., Hsu, S.-Y., Chuang, J.-I., Tsai, M.-S., Lin, S.-R., Chang, N.-S., and Chen, S.-T. (2008) MPP+‐induced neuronal death in rats involves tyrosine 33 phosphorylation of WW domain‐containing oxidoreductase WOX1. Eur J. Neurosci. 27, 1634-1646
    37. Li, M.-Y., Lai, F.-J., Hsu, L.-J., Lo, C.-P., Cheng, C.-L., Lin, S.-R., Lee, M.-H., Chang, J.-Y., Subhan, D., and Tsai, M.-S. (2009) Dramatic co-activation of WWOX/WOX1 with CREB and NF-κB in delayed loss of small dorsal root ganglion neurons upon sciatic nerve transection in rats. PLoS One. 4, e7820
    38. Chang, J.-Y., Lee, M.-H., Lin, S.-R., Yang, L.-Y., Sun, H. S., Sze, C.-I., Hong, Q., Lin, Y.-S., Chou, Y.-T., and Hsu, L.-J. (2015) Trafficking protein particle complex 6A delta (TRAPPC6AΔ) is an extracellular plaque-forming protein in the brain. Oncotarget. 6, 3578
    39. Chang, J.-Y., and Chang, N.-S. (2015) WWOX dysfunction induces sequential aggregation of TRAPPC6AΔ, TIAF1, tau and amyloid β, and causes apoptosis. Cell Death Discov. 1, 1-11
    40. Chang, J.-Y., Chiang, M.-F., Lin, S.-R., Lee, M.-H., He, H., Chou, P.-Y., Chen, S.-J., Chen, Y.-A., Yang, L.-Y., and Lai, F.-J. (2012) TIAF1 self-aggregation in peritumor capsule formation, spontaneous activation of SMAD-responsive promoter in p53-deficient environment, and cell death. Cell Death Dis. 3, e302-e302
    41. Kümmel, D., Müller, J. J., Roske, Y., Misselwitz, R., Büssow, K., and Heinemann, U. (2005) The structure of the TRAPP subunit TPC6 suggests a model for a TRAPP subcomplex. EMBO Rep. 6, 787-793
    42. Gwynn, B., Smith, R.-S., Rowe, L.-B., Taylor, B.-A., and Peters, L.-L. (2006) A mouse TRAPP-related protein is involved in pigmentation. Genomics. 88, 196-203
    43. Lee, M., Lin, S., Chang, J., Schultz, L., Heath, J., Hsu, L., Kuo, Y., Hong, Q., Chiang, M., and Gong, C. (2010) TGF-β induces TIAF1 self-aggregation via type II receptor-independent signaling that leads to generation of amyloid β plaques in Alzheimer's disease. Cell Death Dis. 1, e110-e110
    44. Chang, N.-S., Mattison, J., Cao, H., Pratt, N., Zhao, Y., and Lee, C. (1998) Cloning and characterization of a novel transforming growth factor-β1-induced TIAF1 protein that inhibits tumor necrosis factor cytotoxicity. Biochem Biophys Res Commun. 253, 743-749
    45. Huang, S.-S., and Chang, N.-S. (2018) Phosphorylation/de-phosphorylation in specific sites of tumor suppressor WWOX and control of distinct biological events. Exp Bio Med. 243, 137-147
    46. Lee, M.-H., Shih, Y.-H., Lin, S.-R., Chang, J.-Y., Lin, Y.-H., Sze, C.-I., Kuo, Y.-M., and Chang, N.-S. (2017) Zfra restores memory deficits in Alzheimer's disease triple-transgenic mice by blocking aggregation of TRAPPC6AΔ, SH3GLB2, tau, and amyloid β, and inflammatory NF-κB activation. Alzheimer's Dement. 3, 189-204
    47. Valduga, M., Philippe, C., Lambert, L., Bach-Segura, P., Schmitt, E., Masutti, J. P., François, B., Pinaud, P., Vibert, M., and Jonveaux, P. (2015). WWOX and severe autosomal recessive epileptic encephalopathy: first case in the prenatal period. Journal of human genetics, 60, 267–271
    48. Alkhateeb, A.-M., Aburahma, S.-K., Habbab, W., and Thompson, I.-R. (2016). Novel mutations in WWOX, RARS2, and C10orf2 genes in consanguineous Arab families with intellectual disability. Metabolic brain disease, 31, 901–907
    49. Tabarki, B., Al Mutairi, F., and Al Hashem, A. (2015). The fragile site WWOX gene and the developing brain. Experimental biology and medicine (Maywood) 240, 400–402
    50. Abdel-Salam, G., Thoenes, M., Afifi, H.-H., Körber, F., Swan, D., and Bolz, H.-J. (2014). The supposed tumor suppressor gene WWOX is mutated in an early lethal microcephaly syndrome with epilepsy, growth retardation and retinal degeneration. Orphanet journal of rare diseases, 9, 12
    51. Chang N.-S. (2015). Introduction to a thematic issue for WWOX. Experimental biology and medicine (Maywood) 240, 281–284
    52. Mallaret, M., Synofzik, M., Lee, J., Sagum, C.-A., Mahajnah, M., Sharkia, R., Drouot, N., Renaud, M., Klein, F.-A., and Anheim, M. (2014) The tumour suppressor gene WWOX is mutated in autosomal recessive cerebellar ataxia with epilepsy and mental retardation. Brain. 137, 411-419
    53. Cheng, Y.-Y., Chou, Y.-T., Lai, F.-J., Jan, M.-S., Chang, T.-H., Jou, I.-M., Chen, P.-S., Lo, J.-Y., Huang, S.-S., and Chang, N.-S. (2020). Wwox deficiency leads to neurodevelopmental and degenerative neuropathies and glycogen synthase kinase 3β-mediated epileptic seizure activity in mice. Acta neuropathol. commun. 8, 1-16
    54. Piard, J., Hawkes, L., Milh, M., Villard, L., Borgatti, R., Romaniello, R., Fradin, M., Capri, Y., Héron, D., and Nougues, M.-C. (2019) The phenotypic spectrum of WWOX-related disorders: 20 additional cases of WOREE syndrome and review of the literature. Genet Med. 21, 1308-1318
    55. Younis, N.-S., Mohamed, M.-E., Alolayan, A.-A., Alhussain, G.-Y., Al-Mousa, H.-A., Alshamrani, J.-A., AlMutayib, M.-M., AlQahtani, M.-M., Alhaddad, Z.-A., Alfarhan, Z.-S., AlOmran, Z.-A., and Almostafa, M.-M. (2022). Identification of epilepsy concomitant candidate genes recognized in Saudi epileptic patients. European review for medical and pharmacological sciences. 26, 2143–2157
    56. White, S., Hewitt, J., Turbitt, E., van der Zwan, Y., Hersmus, R., Drop, S., Koopman, P., Harley, V., Cools, M., and Looijenga, L. (2012). A multi-exon deletion within WWOX is associated with a 46,XY disorder of sex development. EUR. J. HUM. GENET. 20, 348–351
    57. Aldaz, C.-M., and Hussain, T. (2020) WWOX Loss of Function in Neurodevelopmental and Neurodegenerative Disorders. In J. Mol Sci. 21, 8922
    58. Beghi, E., Giussani, G., and Sander, J.-W. (2015). The natural history and prognosis of epilepsy. Epileptic disorders : international epilepsy journal with videotape, 17, 243–253
    59. Scharfman, H.-E., Witter, M.-P., and Schwarcz, R.-E. (2000) The parahippocampal region: Implications for neurological and psychiatric diseases, New York Academy of Sciences
    60. Bertram E.-H. (1997). Functional anatomy of spontaneous seizures in a rat model of limbic epilepsy. Epilepsia 38, 95–105
    61. Rutecki, P.-A., Grossman, R.-G., Armstrong, D., and Irish-Loewen, S. (1989). Electrophysiological connections between the hippocampus and entorhinal cortex in patients with complex partial seizures. J. Neurosurg. 70, 667–675
    62. Du, F., Whetsell, W.-O., Jr, Abou-Khalil, B., Blumenkopf, B., Lothman, E.-W., and Schwarcz, R. (1993). Preferential neuronal loss in layer III of the entorhinal cortex in patients with temporal lobe epilepsy. Epilepsy Res. 16, 223–233
    63. Plate, K.-H., Wieser, H.-G., Yasargil, M.-G., and Wiestler, O.-D. (1993). Neuropathological findings in 224 patients with temporal lobe epilepsy. Acta Neuropathol. 86, 433–438.
    64. Spencer, S.-S., and Spencer, D.-D. (1994). Entorhinal-hippocampal interactions in medial temporal lobe epilepsy. Epilepsia 35, 721–727
    65. Gourley, C., Paige, A.-J., Taylor, K.-J., Ward, C., Kuske, B., Zhang, J., Sun, M., Janczar, S., Harrison, D.-J., and Muir, M. (2009) WWOX gene expression abolishes ovarian cancer tumorigenicity in vivo and decreases attachment to fibronectin via integrin α3. Cancer Res. 69, 4835-4842
    66. Jin, C., Ge, L., Ding, X., Chen, Y., Zhu, H., Ward, T., Wu, F., Cao, X., Wang, Q., and Yao, X. (2006) PKA-mediated protein phosphorylation regulates ezrin–WWOX interaction. Biochem Biophys Res Commun. 341, 784-791
    67. Hsu, L.-J., Schultz, L., Hong, Q., Van Moer, K., Heath, J., Li, M.-Y., Lai, F.-J., Lin, S.-R., Lee, M.-H., and Lo, C.-P. (2009) Transforming growth factor β1 signaling via interaction with cell surface Hyal-2 and recruitment of WWOX/WOX1. J. Biol Chem. 284, 16049-16059
    68. Sherman, L.-S., Matsumoto, S., Su, W., Srivastava, T., and Back, S.-A. (2015) Hyaluronan synthesis, catabolism, and signaling in neurodegenerative diseases. Int J. Cell Biol. 2015
    69. Schmaus, A., Bauer, J., and Sleeman, J.-P. (2014) Sugars in the microenvironment: the sticky problem of HA turnover in tumors. Cancer Metastasis Rev. 33, 1059-1079
    70. McAtee, C.-O., Barycki, J.-J., and Simpson, M.-A. (2014) Emerging roles for hyaluronidase in cancer metastasis and therapy. Adv Cancer Res. 123, 1-34
    71. Rai, S.-K., Duh, F.-M., Vigdorovich, V., Danilkovitch-Miagkova, A., Lerman, M.-I., and Miller, A.-D. (2001) Candidate tumor suppressor HYAL2 is a glycosylphosphatidylinositol (GPI)-anchored cell-surface receptor for jaagsiekte sheep retrovirus, the envelope protein of which mediates oncogenic transformation. Proc Natl Acad Sci. 98, 4443-4448
    72. Stern, R. (2003) Devising a pathway for hyaluronan catabolism: are we there yet? Glycobiology. 13, 105R-115R
    73. Misra, S., Hascall, V.-C., Markwald, R.-R., and Ghatak, S. (2015) Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer. Front Immunol. 6, 201
    74. Lee, M.-H., Su, W.-P., Wang, W.-J., Lin, S.-R., Lu, C.-Y., Chen, Y.-A., Chang, J.-Y., Huang, S.-S., Chou, P.-Y., and Ye, S.-R. (2015) Zfra activates memory Hyal-2+ CD3− CD19− spleen cells to block cancer growth, stemness, and metastasis in vivo. Oncotarget. 6, 3737
    75. Hsu, L.-J., Schultz, L., Mattison, J., Lin, Y.-S., and Chang, N.-S. (2005). Cloning and characterization of a small-size peptide Zfra that regulates the cytotoxic function of tumor necrosis factor by interacting with JNK1. Biochem. Biophys. Res. Commun. 327, 415–423
    76. Su, W.-P., Wang, W.-J., Chang, J.-Y., Ho, P.-C., Liu, T.-Y., Wen, K.-Y., Kuo, H.-L., Chen, Y.-J., Huang, S.-S., and Subhan, D. (2020) Therapeutic Zfra4-10 or WWOX7-21 Peptide Induces Complex Formation of WWOX with Selective Protein Targets in Organs that Leads to Cancer Suppression and Spleen Cytotoxic Memory Z Cell Activation In Vivo. Cancers. 12, 2189
    77. Lin, H.-P., Chang, J.-Y., Lin, S.-R., Lee, M.-H., Huang, S.-S., Hsu, L.-J., and Chang, N.-S. (2011) Identification of an in vivo MEK/WOX1 complex as a master switch for apoptosis in T cell leukemia. Genes Cancer. 2, 550-562
    78. Kovács, M., Tóth, J., Hetényi, C., Málnási-Csizmadia, A., and Sellers, J.-R. (2004). Mechanism of blebbistatin inhibition of myosin II. J. Bio. Chem. 279, 35557–35563
    79. Mikulich, A., Kavaliauskiene, S., and Juzenas, P. (2012). Blebbistatin, a myosin inhibitor, is phototoxic to human cancer cells under exposure to blue light. Biochim. Biophy. Acta 1820, 870–877.
    80. Schmidt, A., Harada, S.-I., Kimmel, D.-B., Bai, C., Chen, F., Rutledge, S.-J., Vogel, R.-L., Scafonas, A., Gentile, M.-A., Nantermet, P.-V., et al. (2009). Identification of anabolic selective androgen receptor modulators with reduced activities in reproductive tissues and sebaceous glands. J. Bio. Chem 284, 36367–36376
    81. Cohen, S., and Greenberg, M.-E. (2008). Communication between the synapse and the nucleus in neuronal development, plasticity, and disease. Annual review of cell and developmental biology 24, 183–209
    82. Zemel, B.-M., Nevue, A.-A., Dagostin, A., Lovell, P.-V., Mello, C.-V., and von Gersdorff, H. (2021). Resurgent Na+ currents promote ultrafast spiking in projection neurons that drive fine motor control. Nature communications 12, 6762
    83. Pei, Z., Lee, K.-C., Khan, A., Erisnor, G., and Wang, H.-Y. (2020). Pathway analysis of glutamate-mediated, calcium-related signaling in glioma progression. Biochemical pharmacology 176, 113814
    84. Hanada T. (2020). Ionotropic Glutamate Receptors in Epilepsy: A Review Focusing on AMPA and NMDA Receptors. Biomolecules 10, 464
    85. Ke, P., Gu, J., Liu, J., Liu, Y., Tian, X., Ma, Y., Meng, Y., and Xiao, F. (2023). Syntabulin regulates neuronal excitation/inhibition balance and epileptic seizures by transporting syntaxin 1B. Cell death discovery 9, 187
    86. Barker-Haliski, M., and White, H.-S. (2015). Glutamatergic Mechanisms Associated with Seizures and Epilepsy. Cold Spring Harbor perspectives in medicine 5, a022863
    87. Vanderklish, P.-W., and Bahr, B.-A. (2000). The pathogenic activation of calpain: a marker and mediator of cellular toxicity and disease states. International journal of experimental pathology 81, 323–339
    88. Lam, P.-M., and González, M.-I. (2019). Calpain activation and neuronal death during early epileptogenesis. Neurobiology of disease 124, 141–151
    89. Wang, Y., Liu, Y., Yahya, E., Quach, D., Bi, X., and Baudry, M. (2021). Calpain-2 activation in mouse hippocampus plays a critical role in seizure-induced neuropathology. Neurobiology of disease 147, 105149
    90. Lai, T.-W., Zhang, S., and Wang, Y.-T. (2014). Excitotoxicity and stroke: identifying novel targets for neuroprotection. Progress in neurobiology 115, 157–188
    91. Brzyska, M., and Elbaum, D. (2003). Dysregulation of calcium in Alzheimer's disease. Acta neurobiologiae experimentalis 63, 171–183
    92. Lee, M.-S., Kwon, Y.-T., Li, M., Peng, J., Friedlander, R.-M., and Tsai, L.-H. (2000). Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405, 360–364
    93. Gorman A.-M. (2008). Neuronal cell death in neurodegenerative diseases: recurring themes around protein handling. Journal of cellular and molecular medicine 12, 2263–2280
    94. Negi, D., Granak, S., Shorter, S., O'Leary, V.-B., Rektor, I., and Ovsepian, S.-V. (2023). Molecular Biomarkers of Neuronal Injury in Epilepsy Shared with Neurodegenerative Diseases. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics 20, 767–778
    95. Cho, K.-O., Lybrand, Z.-R., Ito, N., Brulet, R., Tafacory, F., Zhang, L., Good, L., Ure, K., Kernie, S.-G., Birnbaum, S.-G., Scharfman, H.-E., Eisch, A.-J., and Hsieh, J. (2015). Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline. Nature communications 6, 6606
    96. Dohm-Hansen, S., Donoso, F., Lucassen, P.-J., Clarke, G., and Nolan, Y.-M. (2022). The gut microbiome and adult hippocampal neurogenesis: A new focal point for epilepsy?. Neurobiology of disease 170, 105746
    97. Ammothumkandy, A., Ravina, K., Wolseley, V., Tartt, A.-N., Yu, P.-N., Corona, L., Zhang, N., Nune, G., Kalayjian, L., Mann, J.-J., Rosoklija, G.-B., Arango, V., Dwork, A.-J., Lee, B., Smith, J.-A.-D., Song, D., Berger, T.-W., Heck, C., Chow, R.-H., Boldrini, M., and Bonaguidi, M.-A. (2022). Altered adult neurogenesis and gliogenesis in patients with mesial temporal lobe epilepsy. Nature neuroscience 25, 493–503
    98. Liu, J.-Y.-W., Matarin, M., Reeves, C., McEvoy, A.-W., Miserocchi, A., Thompson, P., Sisodiya, S.-M., and Thom, M. (2018). Doublecortin-expressing cell types in temporal lobe epilepsy. Acta neuropathologica communications 6, 60

    無法下載圖示 校內:2028-08-25公開
    校外:2028-08-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE