| 研究生: |
林癸廷 Lin, Guei-Ting |
|---|---|
| 論文名稱: |
二維造波問題之時間領域解析解 Time-Domain Analytic Solution of 2-D Wavemaker Problem |
| 指導教授: |
李兆芳
Lee, Jaw-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 時間領域 、造波 、理論解析解 |
| 外文關鍵詞: | Time-domain, wave generation, analytic solution |
| 相關次數: | 點閱:147 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究為時間領域造波的理論解析,研究問題為一有限等深水槽,左側為造波板做直推式運動,右側為ㄧ不透水直立壁,將直角座標軸原點設置於靜水面與造波板靜止處之交點,初始水位為水平靜水面,造波板開始運動後,尚未達到完全發展的水位波形,稱之為發展中的波,此即為本理論解析之求解重點。採用複數型態求解問題,先將相關邊界條件作泰勒展開,搭配微小振幅波理論線性化問題。做法上將波浪勢函數以傅立葉級數表示,分別代入邊界條件與起始條件,使用參數變異法(method of variation of parameters),求得時間領域線性造波之理論解析。
本理論解得水位函數具收斂特性,且與李(1991)同樣問題之解實數部分相同,時間領域波形在傳遞足夠長時間後,偏造波板一側形成完全發展波形,此部分的波形與Dean and Dalrymple(1984)頻率領域的波形相符,亦驗證本理論的正確性。理論解析方法的優勢在於可獲得水槽波形的全貌,本研究著重於發展中的波形,並考量不同相對水深下的特性變化。研究成果顯示,造波板開始啟動造出的第一個波,即最初波,隨時間的增加,波高有漸減,波長漸增的趨勢,且最初波峰傳遞的速度約為定值。第二波則在初期約等於穩定週期波的波高與波長,隨時間變化的性質則與最初波一致,但長波相較於短波在一倍穩定週期波高與波長的週期時間為長。波浪在形成完全發展波之前,會伴隨一個最大波峰,最大波峰並不穩定存在於某序列波之中,最大波隨時間的移動雖有其趨勢,但偶而會往回傳,因此其波速並非定值。
In this research, an analytic solution is derived to study the generation and propagation of waves which is made by a piston-type wavemaker in an experimental channel. The wavemaker has different setting to generate and propagate water waves along the water surface. Our analytic solution to the problem is innovated from inspections of previous solutions, and is applied to study the time evolution of waves. The Fourier cosine transform is applied to deal with the horizontal coordinate which incorporates boundary conditions at two ends of the wave channel. The function of the vertical coordinate is obtained by solving nonhomogeneous differential equations. Our analytic solution has the same form as Lee (1991) in real part. The formula for water elevation is a series where convergence is associated with the length of the channel. The longer the channel, the more terms required for convergence. The analytic solution obtained in this research is then used to study the unsteady formation of water waves. The results indicate that the first generated wave becomes longer as time increases, while the wave heights regularly decrease. After the generation of 3 to 4 waves, steady fully developed waves are generated. The fully developed waves are compared with the wave theory derived by Dean(1984) in the frequency domain, and the result shows high levels of consistency. Our analytic solution is more efficient than other methods comparisons with other studies help to affirm its accuracy.
1. 李兆芳,「直推式造波其瞬變波浪特性之理論解析」,港灣技術第六期,1991。
2. 郭一羽,「海岸工程學」,文山書局,2003。
3. 張憲國、林西川、許逢元,「二維有限水槽之瞬時造波理論」,第二十九屆海洋工程,2007。
4. 陳俊瑋,「平面水池非線性方向造波之理論分析」,國立成功大學水利及海洋工程學系,碩士論文,2005。
5. Bai,W. and Tayor, R.E., “Fully nonlinear simulation of wave interaction with fixed and floating flared structures”, Ocean Engineering, Vol. 36, No. 3-4, pp. 223-236, March, 2009.
6. Biésel, F. and F. Suquet, “Les Appareils Générateurs de houle en Laboratoire”, La Huille Blanche Vol. 6 (2), (4), (5) , 1951.
7. Hsien-Kuo Chang and Shi-Chuan Lin, “An Analytical Linear Solution of Transient Waves Generated by a Piston-Type Wave-Maker in a Finite Flume”, Journal of Coastal and Ocean Engineering, Vol 9(1), pp. 25-41, 2009
8. Dean, R. G. and Dalrymple , R. A., “Water Wave Mechanics for Engineers and Scientists”, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1984.
9. Finkelstein, A., “The Initial Boundary Value Problem for Transient Water Waves”, Ph.D. Dissertation, New York University, New York , 1953.
10. Havelock, T.H., “Forced Surface Wave on Water”, Philosophical Magazine, Series Vol. 7, 8, pp. 569-576, 1929.
11. Hunt, B., “Water waves generated by distant landslides”, Journal of Hydraulic Research, Vol.26, No.3, pp.307-322, 1988.
12. Joo, S.W., Schultz, W.W. and Messiter, A.F. “An Analysis of the Initial-value Wavemaker Problem”, Journal of Fluid Mechanics, Vol. 214, spp. 161-183, 1990.
13. Kajiura, K., “The leading wave of a tsunami”, Bulletin of Earthquake Research Institute, University of Tokyo, Vol.41, pp.525-571, 1963.
14. Kennard, E.H., “Generation of Surface Waves by a Moving Partition”, Quarterly of applied mathematics, Vol. 7(3), pp. 303-312, 1949.
15. Kim, M.H., J.M. Niedzwecki, J.M. Roesset, J.C. Park, S.Y. Houng, and A. Tavassoli, Fully Nonlinear Multidirectional Wave by 3-D Viscous Numerical Wave Tank, Journal of Offshore Mechanics and Arctic Engineering, Vol.123, pp.124-133, 2001.
16. Lamb, H., “Hydrodynamics”, Dover, New York, 1932.
17. Lee, J-F., “Finite Element Analysis of Wave-Structure Interactions in the Time Domain, Ph.D.Thesis”, Oregon State University, Oregon, 1986.
18. Lee, J.F., Kuo, J.R. and Lee, C.P., “Transient Wavemaker Theory”, Journal of hydraulic research, Vol. 27 (5), pp. 651-663, 1989.
19. Madsen, O. S., “Wave Generated by a Piston-type Wavemaker”, Proceedings of the 12th Coastal Engineering Conference, 1970.
20. Mei, C.C., The Applied Dynamics of Ocean Surface Waves, John Wiley & Sons, Inc., New York, 1982.
21. O'BRIEN, P. J., “A Nonlinear Finite Element Model for the Generation of Waves in a Laboratory Wave Flume”, M.S. Thesis, University College, Galway, 1983.
22. Park, J.C., Y. Uno, T. Sato, H. Miyata, H.H. Chun, “Numerical Reproduction of Fully Nonlinear Multi-Directional Waves by a Viscous 3D Numerical Wave Tank”, Ocean Engineering, Vol.31, Issures 11-12, P.1549-1565, 2004.
23. Robertsa., J. “Transient free-surface flows generated by a moving vertical plate” ,Q. J .M ech. Appl. Math 40, 129-158, 1987.
24. Stoker, J. J., “Water Waves”, Wiley Interscience Publishers, New York, 1968.
25. Shivaji, G.T. and D. Shen, “A 3D Numerical Wave Tank Study for Offshore Structures with Linear and Nonlinear Mooring”, Aquatic Procedia, Vol.4, P.492-499, 2015a.
26. Shivaji, G.T. and D. Shen, “Direct Time Domain Analysis of Floating Structures with Linear and Nonlinear Mooring Stiffness in a 3D Numerical Wave Tank”, Applied Ocean Research, Vol.51, P.153-170, 2015b.
27. Takayama, T., “Theory of Oblique Waves Generated by Serpent-type Wave-maker”, Coastal Engineering in Japan, Vol. 27, pp.1–19, 1984.
28. Willams, A.N. and W.W. Crull, “Simulation of directional waves in a numerical basin by a desingularized integral equation approach”, Ocean Engineering, 27, pp.603-624, 2000.
29. Wu, Y.C. and R.A. Dalrymple, “Analysis of Wave Fields Generated by a Directional Wavemaker”, Coastal Engineering, 11, p.241-261, 1987.