| 研究生: |
吳啟敬 Wu, Chi-chin |
|---|---|
| 論文名稱: |
釩化合物的電化學及光譜研究 Redox chemistry and spectroscopies of vanadium complexes |
| 指導教授: |
許鏵芬
Hsu, Hua-fen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 釩 、硫 、電化學 、高頻率高磁場電子自旋共振 |
| 外文關鍵詞: | S-donor, redox chemistry, vanadium, HFEPR |
| 相關次數: | 點閱:95 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
釩金屬於生物系統中所扮演的角色十分重要,因此一直是很有趣一門研究課題,像是含釩固氮酵素、釩鹵素過氧化酵素、抑制酪氨酸磷酸化酵素及由毒蝿傘(Amantia muscaria) 體中分離出來的amavadin都是跟釩化學相關的。在海鞘生物體中也發現有累積高濃度的釩三價化合物。此外,有些釩化合物被發現具有類胰島素的性質。為了探討在這些生物系統中釩化合物的化學特性,因此我們實驗室著重於釩化學的研究,論文的第一部分是討論藉由循環伏安法(Cyclic voltammetry,CV)的測定,以了解我們實驗室已合成的含硫釩化合物之氧化還原性質,而這些含硫釩化合物分別為[PPh4][VIII(PS3’)Cl] (1)、[PPh4][VIII(PS3”)Cl] (2)、[VIII(PS3”)(N2H4)3] (3)、[NPr4][VIII(PS3)N3] (4)、[VIV(P2S4’)] (5)及[NEt4][VIV(PS3’)(PS2SMe’)] (6)。其中2在以CH3CN為溶劑、CoCp2為還原劑及以2,6-lutidinium chloride供給氫離子的條件下,可以將N2H4催化還原成NH3。因此藉由循環伏安法的測定而釐清此催化還原的反應機制。在第二部份的研究是使用高頻率高磁場電子自旋共振(High-frequency and -Field Electronic Paramagnetic Resonance,HFEPR)光譜儀測定化合物Na[VIII(edta)(H2O)]•3H2O (7), Na[VIII(trdta)]•3H2O (8), [VIII(nta)(H2O)3] (9),用來了解釩三價化合物在水溶液條件下的HFEPR光譜性質,未來可以用於釐清海鞘生物體中的釩化合物是以怎麼樣的形式所儲存,然而此方面的研究是與美國Krzystek與Telser博士合作所測得的HFEPR光譜。
本論文將詳細介紹化合物1~6的電化學性質及文獻比較,以及7~9的HFEPR光譜性質及文獻討論。
There has been an increasing interest in the study of vanadium chemistry due to the importance of vanadium in biological systems. For instance, vanadium plays the key role in vanadium nitrogenase and haloperxoidases, the inhibits protein tyrosine phosphatase (PTP), and is found in amavadin from Amantia muscaria. Ascidians also contain high concentration of vanadium(III) species in their blood cells. In addition, some vanadium complexes have insulin-mimetic behavior. Because of these observations, our laboratory has been focusing on chemistry of vanadium species, particularly, reacting with S-donor ligands such as thiolates. We have obtained a series of vanadium-thiolate complexes including [PPh4][VIII(PS3’)Cl] (1), [PPh4][VIII(PS3”)Cl] (2), [VIII(PS3”)(N2H4)3] (3), [NPr4][VIII(PS3)N3] (4), [VIV(P2S4’)] (5), and [NEt4][VIV(PS3’)(PS2SMe’)] (6). In the first part of my research, the cyclic voltametry was applied for the study of these compounds to reveral their redox properties that might provide mechanistic understanding for their reactivity. Especially, hydrazine could be catalytically reduced to ammonia by 2 under CH3CN, while the CoCp2 and 2,6-lutidinium chloride as electron sources and proton sources, respectively. Due to cyclic voltammeter, the mechanism of catalytic reduction could be clearer. In the second part of my research, High-frequency and -Field Electronic Paramagnetic Resonance (HFEPR) spectroscopies of Na[VIII(edta)(H2O)]•3H2O (7), Na[VIII(trdta)]•3H2O (8), [VIII(nta)(H2O)3] (9) were studies to provide spectroscopic features of V(III) species in aqueous solution. This part of the research is collaborating with Prof. Krzystek at Florida State University and Prof. Telser at Roosevelt University in USA.
In this dissertation, we will detail the redox chemistry of 1~6, and the HFEPR spectroscopies of 7~9.
1. A special issue dedicated to biological aspects of vanadium. J. Inorg. Biochem. 2000, 80, 1-194.
2. A special issue:“New Directions in Chemistry and Biological Chemistry of Vanadium”. Coord. Chem. Rev. 2003, 237, 1-286.
3. Michibata, H.; Yamaguchi, N.; Uyama, T.; Ueki, T., Molecular biological approaches to the accumulation and reduction of vanadium by ascidians. Coord. Chem. Rev. 2003, 237, (1-2), 41-51.
4. Butler, A.; Walker, J. V., Marine haloperoxidases. Chem. Rev. 1993, 93, 1937-1944.
5. Butler, A., Mechanistic considerations of the vanadium haloperoxidases. Coord. Chem. Rev. 1999, 187, (1), 17-35.
6. Rehder, D., Vanadium nitrogenase. J. Inorg. Biochem. 2000, 80, 133-136.
7. Rehder, D.; Pessoa, J. o. C.; Geraldes, C. F. G. C.; Castro, M. M. C. A.; Kabanos, T.; Kiss, T. s.; Meier, B.; Micera, G.; Pettersson, L.; Rangel, M.; Salifoglou, A.; Turel, I.; Wang, D., In vitro study of the insulin-mimetic behaviour of vanadium(IV, V) coordination compounds. J. Biol. Inorg. Chem. 2002, 7, 384-396.
8. Eady, R. R., Structure-function relationships of alternative nitrogenases. Chem. Rev. 1996, 96, 3013-3030.
9. Burgess, B. K.; Lowe, D. J., Mechanism of molybdenum nitrogenase. Chem. Rev. 1996, 96, 2983-3012.
10. Einsle, O.; Tezcan, F. A.; Andrade, S. L. A.; Schmid, B.; Yoshida, M.; Howard, J. B.; Rees, D. C., Nitrogenase MoFe-protein at 1.16 A resolution: a central ligand in the FeMo-cofactor. Science 2002, 297, 1696-1700.
11. Eady, R. R., Current status of structure function relationships of vanadium nitrogenase. Coord. Chem. Rev. 2003, 237, 23-30.
12. Harvey, I.; Arber, J. M.; Eady, R. R.; Smith, B. E.; Garner, C. D.; Hasnain, S. S., Iron K-edge X-ray-absorption spectroscopy of the iron-vanadium cofactor of the vanadium nitrogenase from Azotobacter chroococcum. Biochem. J. 1990, 266, 929-931.
13. Ravi, N.; Moore, V.; Lloyd, S. G.; Hales, B. J.; Huynh, B. H., Mossbauer characterization of the metal clusters in Azotobacter vinelandii nitrogenase VFe protein. J. Biol. Chem. 1994, 269, 20920-20924.
14. Kovacs, J. A.; Holm, R. H., Assembly of vanadium-iron-sulfur cubane clusters from mononuclear and linear trinuclear reactants. J. Am. Chem. Soc. 1986, 108, 340-341.
15. Arber, J. M.; Dobson, B. R.; Eady, R. R.; Stevens, P.; Hasnain, S. S.; Garner, C. D.; Smith, B. E., Vanadium K-edge X-ray absorption spectrum of the VFe protein of the vanadium nitrogenase of Azotobacter chroococcum. Nature 1987, 325, 372 - 374.
16. George, G. N.; Coyle, C. L.; Hales, B. J.; Cramer, S. P., X-ray absorption of Azotobacter vinelandii vanadium nitrogenase. J. Am. Chem. Soc. 1988, 110, 4057-4059.
17. Malinak, S. M.; Demadis, K. D.; Coucouvanis, D., Catalytic reduction of hydrazine to ammonia by the VFe3S4 cubanes – futurer evidence for the direct involvement of the heterometal in the reduction of nitrogenase substrates and possible relevance to the vanadium nitrogenases. J. Am. Chem. Soc. 1995, 117, 3126-3133.
18. Coucouvanis, D.; Demadis, K. D.; Malinak, S. M.; Mosier, P. E.; Tyson, M. A.; Laughlin, L. J., Catalytic and stoichiometric multielectron reduction of hydrazine to ammonia and acetylene to ethylene with clusters that contain the MFe3S4 cores (M=Mo, V). Relevance to the function of nitrogenase. J. Mol. Catal. A 1996, 107, 123-135.
19. Denu, J. M.; Lohse, D. L.; Vijayalakshmi, J.; Saper, M. A.; Dixon, J. E., Visualization of intermediate and transition-state structures in protein-tyrosine phosphatase catalysis. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, (6), 2493-2498.
20. Rehder, D.; Santoni, G.; Licini, G. M.; Schulzke, C.; Meier, B., The medicinal and catalytic potential of model complexes of vanadate-dependent haloperoxidases. Coord. Chem. Rev. 2003, 237, 53-63.
21. Sabbioni, E.; Pozzi, G.; Devos, S.; Pintar, A.; Casella, L.; Fischbach, M., The intensity of vanadium(V)-induced cytotoxicity and morphological transformation in BALB/3T3 cells is dependent on glutathione-mediated bioreduction to vanadium(IV). Carcinogenesis 1993, 14, 2565-2568.
22. Crans, D. C.; Smee, J. J.; Gaidamauskas, E.; Yang, L., That chemistry and Biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem. Rev. 2004, 104, 849-902.
23. Michibata, H.; Morita, A.; Kanamori, K., Vanadobin, a vanadium-binding substrtance, extracted from the blood-cells of an ascidian, can reduce vanadate(V) to vanadyl(IV). Biol. Bull. 1991, 181, 189-194.
24. Kanamori, K.; Sakurai, M.; Kinoshita, T.; Uyama, T.; Ueki, T.; Michibata, H., Direct reduction from vanadium(V) to vanadium(IV) by NADPH in the presence of EDTA A consideration of the reduction and accumulation of vanadium in the ascidian blood cells. J. Inorg. Biochem. 1999, 77, 157-161.
25. Kanamori, K.; Kinebuchi, Y.; Michibata, H., Reduction of vanadium(IV) to vanadium(III) by cysteine methyl ester in water in the presence of amino polycarboxylates. J. Inorg. Biochem. 1997, 67, 391.
26. Ryan, D. E.; Ghatlia, N. D.; McDermott, A. E.; Turro, N. J.; Nakanishi, K.; Kustin, K., Reactivity of tunichromes: reduction of vanadium(V) and vanadium(IV) to vanadium(III) at neutral pH. J. Am. Chem. Soc. 1992, 114, 9659-9660.
27. Frank, P.; Carlson, R. M. K.; Carlson, E. J.; Hodgson, K. O., The vanadium environment in blood cells of Ascidia ceratodes is divergent at all organismal levels: an XAS and EPR spectroscopic study. J. Inorg. Biochem. 2003, 94, 59-71.
28. Kanamori, K., Structures and properties of multinuclear vanadium(III) complexes: seeking a clue to understand the role of vanadium(III) in ascidians. Coord. Chem. Rev. 2003, 237, 147-161.
29. Frank, P.; Carlson, R. M. K.; Carlson, E. J.; Hodgson, K. O., Medium-dependence of vanadium K-edge X-ray absorption spectra with application to blood cells from phlebobranch tunicates. Coord. Chem. Rev. 2003, 237, 31-39.
30. Frank, P.; Carlson, R. M. K.; Hodgson, K. O., Vanadyl ion EPR as a noninvasive probe of pH in intact vanadocytes from Ascidia ceratodes. Inorg. Chem. 1986, 25, 470-478.
31. Fukui, K.; Ueki, T.; Ohya, H.; Michibata, H., Vanadium-binding protein in a vanadium-rich Ascidian Ascidia sydneiensis : CW and Pulsed EPR Studies. J. Am. Chem. Soc. 2003, 125, 6352-6353.
32. Drago, R. S., Physical methods for chemists. 2 ed.; Saunders College Pub.: Ft. Worth, 1992; p 360-400.
33. Parish, R. V., NMR, NQR, EPR, and Mossssbauer spectroscopy in inorganic chemistry E. Horwood: New York, 1990; p 168-194.
34. Krzystek, J.; Fiedler, A. T.; Sokol, J. J.; Ozarowski, A.; Zvyagin, S. A.; Brunold, T. C.; Long, J. R.; Brunel, L. C.; Telser, J., Pseudooctahedral complexes of vanadium(III): Electronic structure investigation by magnetic and electronic spectroscopy. Inorg. Chem. 2004, 43, 5645-5658.
35. Meisch, H. U.; Reinle, W.; Schmitt, J. A., High vanadium content in mushrooms is not restricted to the Fly Agaric (dmanita muscaria). Naturwissenschaften 1979, 66, 620-621.
36. Kneifel, H.; Bayer, E., Determination of the structure of the vanadium compound, amavadine, from Fly Agaric. Angew. Chem. Int. Ed. Engl. 1973, 12, 508.
37. Bayer, E.; Koch, E.; Anderegg, G., Amavadin, an example for selective binding of vanadium in nature: studies of its complexation chemistry and a new structural proposal. Angew. Chem. Int. Ed. Engl. 1987, 26, 545-546.
38. Maria A. A. F. de C. T. Carrondo; M. Teresa Leal S. Duarte; J. Costa Pessoa; J. Armando L. Silva; J. J. R. Fraústo da Silva; Vaz, M. C. T. A.; Vilas-Boas, L. F., Bis-(N-hydroxy-iminodiacetate)vanadate(IV), a synthetic model of amavadin. J. Chem. Soc., Chem. Comm. 1988, 1158-1159.
39. Armstrong, E. M.; Beddoes, R. L.; Calviou, L. J.; Charnock, J. M.; Collison, D.; Ertok, N.; Naismith, J. H.; Garner, C. D., The chemical nature of amavadin. J. Am. Chem. Soc. 1993, 115, 807-808.
40. Nawi, M. A.; Riechel, T. L., The Electrochemistry of amavadine, a vanadium natural product. Inorg. Chim. Acta 1987, 136, 33-39.
41. da Silva, M. F. C. G.; da Silva, J. A. L.; da Silva, J. J. R. F.; Pombeiro, A. J. L.; Amatore, C.; Verpeaux, J.-N., Evidence for a Michaelis-Menten type mechanism in the electrocatalytic oxidation of mercaptopropionic acid by an amavadine mModel. J. Am. Chem. Soc. 1996, 118, 7568-7573.
42. Krzystek, J.; Ozarowski, A.; Telser, J., Multi-frequency, high-field EPR as a powerful tool to accurately determine zero-field splitting in high-spin transition metal coordination complexes. Coord. Chem. Rev. 2006, 250, 2308-2324.
43. Hsu, H.-F.; Chu, W.-C.; Wu, C.-C., Catalytic reduction of hydrazine to ammonia by a vanadium thiolate complex. Inorg. Chem. 2006, 45, 3164-3166.
44. Hsu, H.-F.; Su, C.-L.; Gopal, N. O.; Wu, C.-C.; Chu, W.-C.; Tsai, Y.-F.; Chang, Y.-H.; Liu, Y.-H.; Kuo, T.-S.; Ke, S.-C., Redox chemistry in the reaction of oxovanadium(V) with thiolate-containing ligands: the isolation and Characterization of Non-Oxo Vanadium(IV) Complexes Containing disulfide and thioether groups. Eur. J. Inorg. Chem. 2006, 1161-1167.
45. Hsu, H.-F.; Chu, W.-C.; Hung, C.-H.; Liao, J.-H., The first example of a seven-coordinate vanadium(III) thiolate complex containing the hydrazine molecule, an intermediate of nitrogen fixation. Inorg. Chem. 2003, 42, 7369-7371.
46. 王榮慶, 國立成功大學化學研究所碩士班論文. NCKU: Tainan. Taiwan, 2006.
47. 蘇佳齡, 國立成功大學化學研究所碩士班論文. NCKU: Tainan. Taiwan, 2005.
48. Meier, R.; Boddin, M.; Mitzenheim, S.; Schmid, V.; Schoenherr, T., Elucidation of V(III) complex coodination numbers by electronic spectra. J. Inorg. Biochem. 1998, 69, 249-252.
49. Robles, J. C.; Matsuzaka, Y.; Inomata, S.; Shimoi, M.; Mori, W.; Ogino, H., Syntheses and structures of vanadium(III) complexes containing 1,3-diaminopropane-N,N,N',N'-tetraacetate ([V(trdta)]-) and 1,3-diamino-2-propanol-N,N,N',N'-tetraacetate ([V2(dpot)2]2-). Inorg. Chem. 1993, 32, 13-17.
50. Okamoto, K.-I.; Hidaka, J., Structure of triaqua(nitrilotriacetato)vanadium(III) tetrahydrate. Acta. Cryst. 1992, C48, 1025-1027.
51. Shimoi, M.; Saito, Y.; Ogino, H., Syntheses and crystal structures of seven-coordinate (ethylenedimine-N,N,N',N'-tetraacetato)aquavanadate(III) complexes. Bull. Chem. Soc. Jpn. 1991, 64, 2629-2634.
52. 朱偉正, 國立成功大學化學研究所碩士班論文. NCKU: Tainan, Taiwan, 2003.
53. 陳崑源, 國立成功大學化學研究所碩士班論文. NCKU: Tainan. Taiwan, 2006.
54. House, H. O.; Feng, E.; Peet, N. P., Comparison of various tetraalkylammonium salts as supporting electrolytes in organic electrochemical reactions. J. Org. Chem. 1971, 36, 2371-2375.
55. Kissinger, P. T.; Heineman, W. R., Laboratory techniques in electroanalytical chemistry. 2 ed.; Marcel Dekker, INC.: New York, 1996; p 481-482.
56. Connelly, N. G.; Geiger, W. E., Chemical Redox Agents for Organometallic Chemistry. Chem. Rev. 1996, 96, 877-910.
57. Kovacs, J. A.; Holm, R. H., Heterometallic clusters: synthesis and reactions of vanadium-iron-sulfur single- and double-cubane clusters and the structure of [V2Fe6S8C14(C2H4S2)]. Inorg. Chem. 1987, 26, 702-711.
58. Paine, T. K.; Weyhermuller, T.; Slep, L. D.; Neese, F.; Bill, E.; Bothe, E.; Wieghardt, K.; Chaudhuri, P., Nonoxovanadium(IV) and oxovanadium(V) complexes with mixed O, X, O-Donor ligands (X = S, Se, P, or PO). Inorg. Chem. 2004, 43, 7324-7338.
59. Beissel, T.; Glaser, T.; Kesting, F.; Wieghardt, K.; Nuber, B., Mono- and dinuclear transition metal complexes of the hexadentate ligand tris(4-tert-butyl-2-mercaptobenzyl)-1,4,7-triazacyclononane (L). Inorg. Chem. 1996, 35, 3936-3947.
60. Klich, P. R.; Daniher, A. T.; Challen, P. R.; McConville, D. B.; Youngs, W. J., Vanadium(IV) Complexes with Mixed O,S Donor Ligands. Syntheses, structures, and properties of the anions tris(2-mercapto-4-methylphenolato)vanadate(IV) and bis(2-mercaptophenolato)oxovanadate(IV). Inorg. Chem. 1996, 35, 347-356.
61. Armstrong, E. M.; Collison, D.; Deeth, R. J.; Garner, C. D., Discrete variational X studies of the electronic-structure of amavadin. J. Chem. Soc., Dalton Trans. 1995, 191-195.
62. Smith, P. D.; Berry, R. E.; Harben, S. M.; Beddoes, R. L.; Helliwell, M.; Collison, D.; Garner, C. D., New vanadium-(IV) and -(V) analogues of Amavadin. J. Chem. Soc., Dalton Trans. 1997, 4509-4516.
63. Tregenna-Piggott, P. L. W.; Weihe, H.; Bendix, J.; Barra, A. L.; Gudel, H. U., High-field, multifrequency EPR study of the vanadium(III) hexaaqua cation. Inorg. Chem. 1999, 38, 5928-5929.
64. Beaulac, R.; Tregenna-Piggott, P. L. W.; Barra, A. L.; Weihe, H.; Luneau, D.; Reber, C., The electronic ground state of [V(urea)6]3+ probed by NIR luminescence, electronic Raman, and high-field EPR spectroscopies. Inorg. Chem. 2006, 45, 3399-3407.
65. Block, E.; Ofori-Okai, G.; Zubieta, J. J. Am. Chem. Soc. 1989, 111, 2327-2329.
66. Manzer, L. E.; Fackler, J. P. Inorganic Syntheses 1982, XXI, 138.
67. Zatko, D. A.; Kratochvil, B., Vanadium(III) sulfate as a reducing agent for determination of perchlorate. Anal. Chem. 1965, 37, 1560-1562.