簡易檢索 / 詳目顯示

研究生: 林宛儀
Lin, Wan-Yi
論文名稱: 鋅錫系高溫無鉛銲錫(Zn-Sn-Ga-Al)合金開發及其性質之研究
Development and properties of Zn-Sn based Pb-free solder alloys(Zn-Sn-Ga-Al)for high temperature application
指導教授: 林光隆
Lin, Kwang-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 84
中文關鍵詞: 高溫銲錫熱性質潤濕性氧化性質
外文關鍵詞: high temperature application, thermal properties, wettability, oxidation behaviors
相關次數: 點閱:166下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討鋅錫系合金高溫無鉛銲錫的開發及其相關性質,探討 Zn-25Sn-xGa-yAl (x=0、0.1、0.3 和 0.5,y=0、0.15 和 0.45) 等合金的顯微結構、熱性質、硬度、氧化行為以及潤濕行為。
    顯微結構分析結果顯示,鎵元素與鋁元素的添加都會造成錫鋅共晶組織中針棒狀富鋅相減少的現象。熱分析結果顯示,添加鎵與鋁元素的鋅錫鎵鋁四元合金其固相線與液相線溫度均低於 Zn-25Sn。硬度分析結果顯示,鎵與鋁的添加會提升合金的硬度。高溫氧化測試結果顯示,在氧化初期,四元合金中鎵含量與鋁含量的增加都會提高合金的氧化速率;在氧化後期,四元合金中鎵含量的增加會提高合金的氧化速率,而鋁含量的增加可以降低合金的氧化速率。本研究以潤濕天平探討鋅錫鎵鋁四元合金的潤濕性,研究結果顯示此四元合金的潤濕性優於Zn-25Sn與傳統95Pb-5Sn合金;增加鎵含量可以提升銲錫的潤濕性,而增加鋁含量會降低銲錫的潤濕性。鋅錫鎵鋁四元合金與銅基板間的潤濕行為在界面生成介金屬化合物,所生成的界面介金屬化合物為(Cu,Al)5Zn8與(Cu,Al)Zn5。

    The microstructure, thermal properties, hardness, oxidation behaviors and wetting properties of lead free Zn-25Sn-xGa-yAl (x=0, 0.1, 0.3, and 0.5; y=0, 0.15, and 0.45) solders were investigated.
    The results show that the addition of Ga and Al elements reduced the needle-like Zinc-rich phase of the eutectic Sn-Zn structure. The thermal analysis shows that the solidus and liquidus temperatures of Zn-Sn-Ga-Al are lower than that of Zn-25Sn. The addition of Ga and Al increases the micro-hardness of Zn-25Sn. The oxidation test indicates the addition of Ga and Al increases the oxidation rate in the reaction control stage. Afterwards, the oxidation rates decrease and increase in the diffusion control stage for the addition of Al and Ga, respectively. In this study, the wettability of Zn-Sn-Ga-Al was investigated with wetting balance method and was found to be better than that of Zn-25Sn and traditional 95Pb-5Sn solders. The addition of Ga enhances the wettability while Al degrades the wettability. The wetting behavior was found to be accompanied by the formation of interfacial intermetallic compound. The intermetallic compounds formed between Cu substrate and Zn-Sn-Ga-Al solder were (Cu,Al)5Zn8 and (Cu,Al)Zn5.

    總目錄 中文摘要 …………………………………………………………… I Abstract …………………………………………………………… II 致謝 ............................................................................................ III 總目錄 …………………………………………………………… IV 表目錄 …………………………………………………………… VII 圖目錄 …………………………………………………………… VIII 第壹章 簡介……………………………………………………... 1 1-1 電子構裝技術................................................................... 1 1-2 傳統鉛錫合金..................................................................... 1 1-3 高溫無鉛銲錫系統............................................................. 4 1-3-1 金錫系合金......................................................................... 4 1-3-2 鋅鋁系合金......................................................................... 6 1-3-3 鉍銀系合金......................................................................... 6 1-3-4 鋅錫系合金......................................................................... 9 1-4 潤濕現象............................................................................. 9 1-4-1 潤濕天平試驗的原理………………………………......... 12 1-4-2 影響潤濕性的因素............................................................. 13 1-5 研究動機與目的................................................................. 14 第貳章 研究方法與步驟................................................................. 18 2-1 實驗構想……………………………………………......... 18 2-2 高溫無鉛銲錫的配製......................................................... 18 2-3 高溫無鉛銲錫之顯微組織觀察與分析……………......... 19 2-4 高溫無鉛銲錫之熱性質分析………………………......... 19 2-5 高溫無鉛銲錫之硬度......................................................... 19 2-6 高溫無鉛銲錫之抗氧化性質分析..................................... 22 2-6-1 熱重分析............................................................................. 22 2-6-2 表面氧化層之分析............................................................. 22 2-7 高溫無鉛銲錫之潤濕行為................................................. 22 2-7-1 基材前處理......................................................................... 23 2-7-2 潤濕天平試驗..................................................................... 23 第參章 結果與討論......................................................................... 25 3-1 高溫無鉛銲錫微觀組織、熱性質與硬度分析………….. 25 3-1-1 顯微結構分析..................................................................... 25 3-1-2 熱差分析............................................................................. 38 3-1-3 維氏硬度值......................................................................... 43 3-2 高溫無鉛銲錫之高溫氧化行為……………………......... 46 3-2-1 不同銲錫合金之氧化行為比較......................................... 46 3-2-2 氧化速率計算..................................................................... 48 3-2-3 表面氧化物分析................................................................. 52 3-3 高溫無鉛銲錫之潤濕行為…………………………......... 57 3-3-1 不同銲錫合金與銅基材間之潤濕行為探討………......... 57 3-4 高溫無鉛銲錫與銅基材間之界面反應............................. 63 3-4-1 銲錫與基板之界面觀察及分析......................................... 63 第肆章 結論..................................................................................... 75 第伍章 未來研究之建議................................................................. 76 參考文獻 ……………………………………………………………. 77 表目錄 表3-1 不同銲錫合金之針棒狀富鋅相密度...................................... 34 表3-2 高溫無鉛銲錫合金之固液相線溫度...................................... 42 表3-3 銲錫合金之維氏硬度值.......................................................... 44 表3-4 銲錫合金的氧化速率.............................................................. 50 表3-5 Zn-25Sn-0.5Ga-0.45Al 與銅基板界面處 Cu5Zn8 內的 EDS 分析……………………………………………………. 68 表3-6 各元素之原子半徑.................................................................. 71 表3-7 Cu、Zn 與 Al 原子的陰電性、價數以及晶體結構............ 72 圖目錄 圖1-1 電子構裝層級.......................................................................... 2 圖1-2 黏晶與覆晶接合示意圖.......................................................... 3 圖1-3 鉛錫二元相圖.......................................................................... 5 圖1-4 金錫二元相圖.......................................................................... 7 圖1-5 鋅鋁二元相圖.......................................................................... 8 圖1-6 鉍銀二元相圖.......................................................................... 10 圖1-7 鋅錫二元相圖……………………………………………….. 11 圖1-8 銲錫合金與基材間潤濕行為之力學平衡.............................. 15 圖1-9 基材於潤濕天平試驗時與液態銲錫之力學平衡.................. 16 圖1-10 潤濕曲線與基材浸鍍過程的相對位置圖………………….. 17 圖2-1 實驗流程圖.............................................................................. 20 圖2-2 石英封管流程.......................................................................... 21 圖2-3 銅基材前處理流程.................................................................. 24 圖3-1 Zn-25Sn 之微觀組織 (15℃/min 升溫到 700℃ 並持溫 2 小時後爐冷到室溫)................................................................. 27 圖3-2 銲錫合金之微觀組織(a)Zn-25Sn-0.1Ga-0.15Al (b) Zn-25Sn-0.1Ga-0.45Al............................................................. 28 圖3-3 銲錫合金之微觀組織(a)Zn-25Sn-0.5Ga-0.15Al (b)Zn-25Sn-0.5Ga-0.45Al…………………………………… 29 圖3-4 Zn-25Sn-0.3Ga-0.45Al銲錫合金之元素面掃描分析圖…… 30 圖3-5 鎵錫二元相圖.......................................................................... 31 圖3-6 鋁鎵二元相圖.......................................................................... 32 圖3-7 Zn-25Sn-0.5Ga-0.45Al之X光繞射圖................................... 33 圖3-8 鋁含量變化對針棒狀富鋅相密度之影響.............................. 35 圖3-9 鎵含量變化對針棒狀富鋅相密度之影響.............................. 36 圖3-10 Zn-25Sn-0.3Ga-0.45Al銲錫合金之Zn元素面掃描分析圖.. 37 圖3-11 Zn-25Sn之熱差掃描分析圖.................................................... 39 圖3-12 熱差掃描分析圖 (a)Zn-25Sn-0.1Ga-0.15Al (b)Zn-25Sn-0.1Ga-0.45Al........................................................ 40 圖3-13 熱差掃描分析圖 (a)Zn-25Sn-0.5Ga-0.15Al (b)Zn-25Sn-0.5Ga-0.45Al........................................................ 41 圖3-14 鋁錫二元相圖.......................................................................... 45 圖3-15 不同銲錫合金在 450℃、高氧 (85% O2+15% N2) 環境下的熱重分析曲線圖………………………………………….. 47 圖3-16 銲錫合金在反應控制階段的氧化速率圖.............................. 51 圖3-17 在 450℃ 經150分鐘氧化測試之Zn-25Sn-0.5Ga-0.45Al橫截面...................................................................................... 53 圖3-18 銲錫合金在 450℃ 經過 50 分鐘氧化測試後的表面元素縱深分析(a)Zn-25Sn (b)Zn-25Sn-0.1Ga-0.15Al (c)Zn-25Sn-0.1Ga-0.45Al (d)Zn-25Sn-0.5Ga-0.15Al (e)Zn-25Sn-0.5Ga-0.45Al......................................................... 55 圖3-19 銲錫合金在 450℃ 經過 150 分鐘氧化測試後的表面元素縱深分析(a)Zn-25Sn (b)Zn-25Sn-0.1Ga-0.15Al (c)Zn-25Sn-0.1Ga-0.45Al (d)Zn-25Sn-0.5Ga-0.15Al (e)Zn-25Sn-0.5Ga-0.45Al......................................................... 56 圖3-20 不同銲錫合金與銅基材間潤濕測試之潤濕時間及最大潤濕力.......................................................................................... 59 圖3-21 Zn-25Sn 之潤濕曲線.............................................................. 60 圖3-22 Zn-25Sn-0.5Ga-0.15Al 與 Zn-25Sn-0.5Ga-0.45Al 跟銅基板間潤濕測試之潤濕時間及最大潤濕力.............................. 61 圖3-23 Zn-25Sn-0.1Ga-0.15Al 與 Zn-25Sn-0.5Ga-0.15Al 跟銅基板間潤濕測試之潤濕時間及最大潤濕力.............................. 62 圖3-24 銅基板浸鍍於 450℃ 銲錫合金 15 秒後界面型態的橫截面圖 (a)Zn-25Sn (b)Zn-25Sn-0.1Ga-0.15Al (c)Zn-25Sn-0.5Ga-0.15Al (d)Zn-25Sn-0.5Ga-0.45Al.............. 65 圖3-25 Zn-25Sn-0.5Ga-0.45Al 與銅基板間介金屬化合物之元素面掃描分析.............................................................................. 66 圖3-26 鋁銅鋅三元相圖 (500℃)........................................................ 67 圖3-27 Zn-25Sn-0.5Ga-0.45Al 與銅基板界面處的鋁元素線掃描分析.......................................................................................... 69 圖3-28 鋁銅二元相圖.......................................................................... 73 圖3-29 (a)Zn-25Sn-0.5Ga-0.45Al 與銅基板界面橫截面圖 (b) Zn-25Sn-0.5Ga-0.45Al 與銅基板界面之鋁元素面掃描分析 (c) Zn-25Sn-0.5Ga-0.15Al 與銅基板界面橫截面圖 (d) Zn-25Sn-0.5Ga-0.15Al 與銅基板界面之鋁元素面掃描分析.............................................................................................. 74

    參考文獻

    1. R. R. Tummala, “Fundamentals of microsystems packaging”, McGraw-Hill, New York, (2001) 18.
    2. Hong Xiao, “Introduction to Semiconductor Manufacturing Technology”, Prentice Hall, (2000) 44-48.
    3. T. B. Massalski, “Binary Alloy Phase Diagrams”, ASM Metals Park, Ohio, 1986.
    4. V. Chidambaram, J. Hattel, and J. Hald, “High-temperature Lead-free Solder Alternatives”, 88 (2011) 981-989.
    5. 葉宗凱,“Sn-Zn-xAg-Al-Ga無鉛銲錫氧化行為之研究”,碩士論文,成功大學材料系,2007。
    6. M. Abtew and G. Selvaduray, “Lead-free Solders in Microelectronics”, Materials Science and Engineering, 27 (2000) 95-141.
    7. P. T. Vianco and D. R. Frear, “Issues in the Replacement of Lead-Bearing Solders”, JOM Journal of the Minerals, Metals, and Materials Society, 45 (1993) 14-19.
    8. K. Suganuma, S. J. Kim, and K. S. Kim, “High-Temperature Lead-Free Solders: Properties and Possibilities”, JOM Journal of the Minerals, Metals and Materials Society, 61 (2009) 64-71.
    9. 林奕安,“鋅基高溫無鉛銲錫合金開發及其性質之研究”,碩士論文,成功大學材料系,2009。
    10. N. C. Lee, “Getting Ready for Lead-free Solders”, Soldering & Surface Mount Technology, 9 (1997) 65-69.
    11. Y. C. Liu, J. W. R. Teo, S. K. Tung, and K. H. Lam, “High-temperature Creep and Hardness of Eutectic 80Au/20Sn Solder”, Journal of Alloys and Compounds, 448 (2008) 340-343.
    12. X. Liu, M. H. Hu, H. K. Nguyen, C. G. Caneau, M. H. Rasmussen, R. W. Davis, and C. E. Zah, “Comparison Between Epi-Down and Epi-Up Bonded High-Power Single-Mode 980-nm Semiconductor Lasers”, IEEE Transactions on Advanced Packaging, 27 (2004) 640-646.
    13. S. Kim, K. S. Kim, S. S. Kim, K. Suganuma, and G. Izuta, “Improving the Reliability of Si Die Attachment with Zn-Sn-Based High-Temperature Pb-Free Solder using a TiN Diffusion Barrier”, Journal of Electronic Materials, 38 (2009) 2668-2675.
    14. S. Kim, K. S. Kim, K. Suganuma, and G. Izuta, “Interfacial Reactions of Si Die Attachment with Zn-Sn and Au-20Sn High Temperature Lead-Free Solders on Cu Substrates”, Journal of Electronic Materials 38 (2009) 873-883.
    15. Y. Takaku, L. Felicai, I. Ohnuma, R. Kainuma, and K. Ishida, “Interfacial Reaction Between Cu Substrates and Zn-Al Base High-Temperature Pb-Free Solders”, Journal of Electronic Materials, 37 (2008) 314-323.
    16. N. Kang, H. S. Na, S. J. Kim, and C. Y. Kang, “Alloy design of Zn-Al-Cu solder for ultra high temperatures”, Journal of Alloys and Compounds, 467 (2009) 246-250.
    17. T. Shimizu, H. Ishikawa, I. Ohnuma, and K. Ishida, “Zn-Al-Mg-Ga alloys as Pb-free solder for die-attaching use”, Journal of Electronic Materials, 28 (1999) 1172-1175.
    18. S. J. Kim, K. S. Kim, S. S. Kim, C. Y. Kang, and K. Suganuma, “Characteristics of Zn-Al-Cu Alloys for High Temperature Solder Application”, Materials Transactions, 49 (2008) 1531-1536.
    19. M. Rettenmayr, P. Lambracht, B. Kempf, and C. Tschudin, “Zn-Al Based Alloys as Pb-Free Solders for Die Attach”, Journal of Electronic Materials, 31 (2002) 278-285.
    20. Y. Takaku, K. Makino, K. Watanabe, I. Ohnuma, R. Kainuma, Y. Yamada, Y. Yagi, I. Nakagawa, T. Atsumi, and K. Ishida, “Interfacial Reaction between Zn-Al-based High-Temperatrue Solders and Ni Substrate”, Journal of Electronic Materials, 38 (2009) 54-60.
    21. V. Chidambaram, J. Hald, and J. Hattel, “Development of Au-Ge Based Candidate Alloys as an Alternative to High-lead Content Solders”, Journal of Alloys and Compounds, 490 (2010) 170-179.
    22. J. M. Song, H. Y. Chuang, and Z. M. Wu, “Substrate Dissolution and Shear Properties of the Joints between Bi-Ag Alloys and Cu Substrates for High-Temperature Soldering Applications”, Journal of Electronic Materials, 36 (2007) 1516-1523.
    23. J. N. Lalena, N. F. Dean, and M. W. Weiser, “Experimental investigation of Ge-doped Bi-11Ag as a New Pb-free Solder Alloys for Power Die Attachment”, Journal of Electronic Materials, 31 (2002) 1244-1249.
    24. Y. Yamada, Y. Takaku, Y. Yagi, Y. Nishibe, I. Ohnuma, Y. Sutou, R. Kainuma, and K. Ishida, “Pb-free High Temperature Solders for Power Device Packaging”, Microelectronic Reliability, 46 (2006) 1932-1937.
    25. M. Rettenmayr, P. Lambracht, B. Kempf, and M. Graff, “High Melting Pb-Free Solder Alloys for Die-Attach Applications”, Advanced Engineering Materials, 7 (2005) 965-969.
    26. Y. Shi, W. Fang, Z. Xia, Y. Lei, F. Guo, and X. Li, “Investigation of Rare earth-doped BiAg High-temperature Solders”, Journal of Materials Sciences: Materials in Electronics, 21 (2010) 875-881.
    27. J. H. Kim, S. W. Jeong, and H. M. Lee, “Thermodynamics-Aided Alloy Design and Evaluation of Pb-free Solder for High-Temperature Applications”, Materials Transactions, 43 (2002) 1873-1878.
    28. J. M. Song, H. Y. Chuang, and Z. M. Wu, “Interfacial Reactions between Bi-Ag High-temperature Solders and Metallic Substrates”, Journal of Electronic Materials, 35 (2006) 1041-1048.
    29. K. Suganuma, “Conductive Adhesives: Alternative to High Temperature Solders and The Future”, Proceedings of the 6th International IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics, Tokyo, Japan (2007) 30-35.
    30. Z. Moser, J. Dutkiewicz, W. Gasior, and J. Salawa, “ The Sn-Zn (Tin-Zinc) System” Journal of Phase Equilibria, 6 (1985) 330-334.
    31. K. Suganuma, J. E. Lee, and K. S. Kim, “Zn-Sn and Zn-In High-Temperature Lead-Free Solders”, 2007 MRS Spring Meeting Symposium E: Pb-free and RoHS-Compliant Materials and Processes for Microelectronics, San Francisco, USA (2007).
    32. J. E. Lee, K. S. Kim, K. Suganuma, M. Inoue, and G. Izuta, “Thermal Properties and Phase Stability of Zn-Sn and Zn-In Alloys as High Temperature Lead-free Solder”, Materials Transactions, 48 (2007) 584-593.
    33. S. J. Kim, K. S. Kim, S. S. Kim, and K. Suganuma, “Interfacial Reaction and Die Attach Properties of Zn-Sn High-Temperature Solders”, Journal of Electronic Materials, 38 (2009) 266-272.
    34. T. Takahashi, S. Komatsu, and H. Nishikawa, T. Takemoto, “Improvement of High-Temperature Performance of Zn-Sn Solder Joint”, Journal of Electronic Materials, 39 (2010) 1241-1247.
    35. J. E. Lee, K. S. Kim, K. Suganuma, J. Takenaka, and K. Hagio, “Interfacial properties of Zn-Sn alloys as high temperature lead-free solder on Cu substrate”, Materials Transactions, 46 (2005) 2413-2418.
    36. S. W. Yoon, W. K. Choi, and H. M. Lee, “Calculation of Surface Tension and Wetting Properties of Sn-Based Solder alloys”, Scripta Materialia, 40 (1999) 297-302.
    37. G. Leonida, “Handbook of Printed Circuit Design, Manufacture, Components & Assembly”, Electrochemical Publications, Scotland, 1981.
    38. F. Guo, S. Choi, J. P. Lucas, and K. N. Subramanian, “Effects of Reflow on Wettability, Microstructure and Mechanical Property in Lead-Free Solders”, Journal of Electronic Materials, 29 (2000) 1241-1248.
    39. R. Mayappan, A. B. Ismail, Z. A. Ahmad, T. Ariga, and L. B. Hussain, “Effect of Sample Perimeter and Temperature on Sn-Zn Based Lead-free Solders”, Materials Letters, 60 (2006) 2383-2389.
    40. F. G. Yost, F. M. Hosking, and D. R. Frear, “The Mechanics of Solder Alloy Wetting and Spreading”, Van Nostrand Reinhold, New York, 1993.
    41. D. R. Frear, W. B. Jones, and K. R. Kinsman, “Solder Mechanics, A State of the Art Assessment”, TMS Publications, Warrendale, 1991.
    42. C. Melton, “The Effect of Reflow Process Variables on the Wettability of Lead-free Solders”, JOM Journal of the Minerals, Metals, and Materials Society, 45 (1993) 33-35.
    43. 劉乃碩,“添加鎵元素對錫鋅銀鋁無鉛銲錫各種性質影響之研究”, 博士論文,成功大學材料系,2007。
    44. J. Zhou, D. Huang, Y. L. Fang, and F. Xue, “Investigation on Properties of Sn-8Zn-3Bi Lead-free Solder by Nd Addition”, Journal of Alloys and Compounds, 480 (2009) 903-907.
    45. D. Q. Yu, H. P. Xie, and L. Wang, “Investigation of Interfacial Microstructure and Wetting Property of Newly Developed Sn-Zn-Cu Solders with Cu Substrate”, Journal of Alloys and Compounds, 385 (2004) 119-125.
    46. 林耿立,“Sn-Zn-Ag-xAl-yBi 無鉛銲錫合金之顯微結構、機械性質及潤濕性質研究”,碩士論文,成功大學材料系,2008。
    47. H. Wang, S. Xue, W. Chen, and F. Zhao, “Effects of Ga-Ag, Ga-Al and Al-Ag additions on the wetting characteristics of Sn-9Zn-X-Y lead-free solders”, Journal of Materials Science: Materials in Electronics, 20 (2009) 1239-1246.
    48. 賴瑞協,“Sn-8.5Zn-xAg-0.01Al-0.1Ga 無鉛銲錫合金與銅基材之潤濕行為與界面反應研究”,碩士論文,成功大學材料系,2007。
    49. E. E. M. Noor, N. M. Sharif, C. K. Yew, and T. Ariga, “Wettability and Strength of In-Bi-Sn Lead-free Solder Alloy on Copper Substrate”, Journal of Alloys and Compounds, 507 (2010) 290-296.
    50. C. M. L. Wu, C. M. T. Law, D. Q. Yu, and L. Wang, “The Wettability and Microstructure of Sn-Zn-RE Alloys”, Journal of Electronic Materials, 32 (2003) 63-69.
    51. C. B. Lee, S. B. Jung, Y. E. Shin, and C. C. Shur, “The Effect of Bi Concentration on Wettability of Cu Substrate by Sn-Bi solders”, Materials Transactions, 42 (2001) 751-755.
    52. K. L. Lin, L. H. Wen, and T. P. Liu, “The Microstructures of the Sn-Zn-Al Solder Alloys”, Journal of Electronic Materials, 27 (1998) 97-105.
    53. K. L. Lin, K. I. Chen, and P. C. Shi, “A Potential Drop-In Replacement for Eutectic Sn-Pb solder-The Sn-Zn-Ag-Al-Ga Solder”, Journal of Electronic Materials, 32 (2003) 1490-1495.
    54. K. L. Lin, and T. P. Liu, “High-Temperature Oxidation of a Sn-Zn-Al Solder”, Oxidation of Metals, 50 (1998) 255-267.
    55. 黃家緯,“錫鋅系無鉛銲錫(Sn-Zn-Al-Ag Solder)之研究”,博士論文,成功大學材料系,2005。
    56. H. Wang, S. Xue, F. Zhao, and W. Chen, “Effects of Ga, Al, Ag, and Ce multi-additions on the wetting characteristics of Sn-9Zn lead-free solder”, Rare Metals, 28 (2009) 600-605.
    57. K. I. Chen, and K. L. Lin, “The Microstructures and Mechanical Properties of the Sn-Zn-Ag-Al-Ga Solder Alloys-The Effect of Ga”, Journal of Electronic Materials, 32 (2003) 1111-1116.
    58. L. Zhang, S. B. Xue, L. L. Gao, Z. Sheng, H. Ye, Z. X. Xiao, G. Zeng, Y. Chen, and S. L. Yu, “Development of Sn-Zn lead-free solders bearing alloying elements”, Journal of Materials Science: Materials in Electronics, 21 (2010) 1-15.
    59. P. Zhang, H. Guo, F. Yang, and J. Xu, “Effect of Alloying Elements on the High-Temperature Oxidation Resistance and Wettability of the Sn-9Zn Alloy”, Proceedings of the 7th International Conference on Electronics Packaging Technology, Shanghai, China (2006) 1-4.
    60. W. Chen, S. Xue, H. Wang, J. Wang, and Z. Han, “Investigation on properties of Ga to Sn-9Zn lead-free solder”, Journal of Materials Science: Materials in Electronics, 21 (2010) 496-502.
    61. J. D. Plummer, M. D. Deal, and P. B. Griffin, “Silicon VLSI Technology”, Prentice Hall, New Jersey, 2000.
    62. K. I. Chen, S. C. Cheng, S. Wu, and K. L. Lin, “Effects of small Additions of Ag, Al, and Ga on the Structure and Properties of the Sn-9Zn Eutectic alloy”, Journal of Alloys and Compounds, 416 (2006) 98-105.
    63. 鄭壽昌,“錫-鋅-銀-鋁無鉛銲錫的機械、潤濕及時效性之研究”, 博士論文,成功大學材料系,2004。
    64. R. Hultgren, “Selected Values of the Thermodynamic Properties of Binary Alloys Part Ⅱ”, American Socirty for Metals, Ohio, 1973.
    65. H. Liang, and Y. A. Chang, “A Thermodynamic Description for the Al-Cu-Zn Alloys”, Journal of Phase Equilibria and Diffusion, 19 (1998) 25-37.
    66. J. F. Shackelford, A. William, and P. Juns, “Materials science and engineering handbook”, CRC Press, Boca Raton, 1994.
    67. R. E. Reed-Hill, and R. Abbaschian, “Physical Metallurgy Principles”, PWS-Kent, Boston, (1994) 273.
    68. R. E. Reed-Hill, and R. Abbaschian, “Physical Metallurgy Principles”, PWS-Kent, Boston, (1994) 278-279.
    69. Linus Pauling, “The Nature of the Chemical Bond”, 3rd ed., (1960) 43.

    下載圖示 校內:2012-08-09公開
    校外:2012-08-09公開
    QR CODE